File size: 13,649 Bytes
fed626e
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b5177caa9e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b5177caaa70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b5177caab00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b5177caab90>", "_build": "<function ActorCriticPolicy._build at 0x7b5177caac20>", "forward": "<function ActorCriticPolicy.forward at 0x7b5177caacb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b5177caad40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b5177caadd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b5177caae60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b5177caaef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b5177caaf80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b5177cab010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b5177e568c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719227892781347536, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMA3i71Qp5o/qd7Lvo88OL+rD/89YlEVPgAAAAAAAAAAAKU7PesrcT/IgS8+1xAov1bo3r1rI+Y9AAAAAAAAAACAcZu9noi+P7dDRb8VIYw+l/3GPVxpOD4AAAAAAAAAAIABlb3NKa8/osJBv2Lqhb5qpqE93vA5PgAAAAAAAAAAgHDlPol4AT9mgFc/Rzqdv1CPRL8DsrG+AAAAAAAAAACAPDQ/ZFeSPoJwkD+d052/nGMZv8ojVL4AAAAAAAAAAPNNpj6XzQ0/p2gVPyyFjb/l/QM8cAiOPgAAAAAAAAAAnNB4vxIR8jxzmty/2fK1v3qsmz+NGo8+AAAAAAAAgD9NI389jvatP4BqyT67hWW+S9DYvXjmJb4AAAAAAAAAAI3Zij0Kj5g/Q+LhPocCNb9OM1O9NBUKvQAAAAAAAAAA6nymvutasT/idTi/KwSLvkGVCb5iVte9AAAAAAAAAABtOga+UIJSP1Apnb4xzYK/5xQEvm4Rhj0AAAAAAAAAAHNn9T3ZPr8/yiVRP2zfBD44EAy+rV86vgAAAAAAAAAAABjKPCFeEz+dvrI9ZdmUv2s6M75mneK9AAAAAAAAAADNjpa81n6nP5IPGr71mdC+JC0cPamHKD0AAAAAAAAAAAApNL6R754+UmbGvn8Jnb9+w14+d+ozPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwF6gPNFBppOMAWyUS3SMAXSUR0AubljmSyMUdX2UKGgGR8BbRQ80UGmlaAdLUGgIR0AudizcAR02dX2UKGgGR8B3cDx3FDOUaAdLZmgIR0AufDtPYWcjdX2UKGgGR8BqQNHrhR64aAdLTmgIR0AuhLqUu+RHdX2UKGgGR8BwTLTVlPJraAdLWGgIR0AuiZQYUFjedX2UKGgGR8BmXV5KODJ2aAdLTGgIR0AuowfyPMjedX2UKGgGR8BU6nBtUGVzaAdLYGgIR0AupOvdM0xedX2UKGgGR8B6B5Nucc2jaAdLVmgIR0Auqwnpjc2zdX2UKGgGR8BvdAR7JGONaAdLSWgIR0AutNOdoWYXdX2UKGgGR8BRAdOM2m52aAdLVmgIR0AuuNe+mFajdX2UKGgGR8BZB8psoDxLaAdLSWgIR0Au2+otL+PzdX2UKGgGR8Bm8pPXTVlPaAdLdmgIR0Au4n752yLRdX2UKGgGR8BnFSUornTzaAdLQmgIR0Au8oOQQtjDdX2UKGgGR8BSVNsFdLQHaAdLeGgIR0AvDmr8zhxYdX2UKGgGR8BSsivovBacaAdLOWgIR0AvFqY7aIvbdX2UKGgGR8BfiWXokiUxaAdLhGgIR0AvGjtXxOLzdX2UKGgGR8BfITUI9kjHaAdLcGgIR0AvONEPUaybdX2UKGgGR8BZ/gtjCpFTaAdLR2gIR0AvOpVjqfOEdX2UKGgGR8BYtLBj4HopaAdLX2gIR0AvQRQrMC9zdX2UKGgGR8BZLsT8HfMwaAdLT2gIR0AvQ7QswtaqdX2UKGgGR8BzrvSWqtHQaAdLemgIR0AvRoi9qUNbdX2UKGgGR8BckvMGHHmzaAdLSmgIR0AvSv/zasZHdX2UKGgGR8Bn+H9vS+g2aAdLcWgIR0AvTHim2sq8dX2UKGgGR8BAPADq4YrKaAdLSmgIR0AvTu1ndweedX2UKGgGR8BxC3Imw7koaAdLemgIR0AvaSYgJTl1dX2UKGgGR8BY9bRSgoPTaAdLRGgIR0AvZpgTh5xBdX2UKGgGR8BfjZMtbs4UaAdLcWgIR0AvZp+tr9EUdX2UKGgGR8BD6c3uNPxhaAdLVGgIR0AviK0D2alUdX2UKGgGR8BnNaQeV9ncaAdLSGgIR0AvlgE2YOUddX2UKGgGR8Be35c5bQkYaAdLVWgIR0Avtepn6EamdX2UKGgGR8Bbd20Z3s5XaAdLS2gIR0AvwNFSbYsedX2UKGgGR8BcD41cdHUdaAdLUWgIR0Avza3Zwn6VdX2UKGgGR8BsH4NG3F1kaAdLaWgIR0Av2THsC1Z1dX2UKGgGR8BxYhLrX18LaAdLeWgIR0Av2mY0EX+EdX2UKGgGR8BbcYrWiDdyaAdLVWgIR0Av4XTmW+oMdX2UKGgGR8BYqQDJU5uJaAdLRmgIR0Av6ZML4N7TdX2UKGgGR8BzrTv5P/JeaAdLVWgIR0Av6Y3Ns3yadX2UKGgGR8B3JyyrxRVIaAdLaWgIR0AwAJMQEpy7dX2UKGgGR8Bg+Am/nGKiaAdLbWgIR0AwBV45cTrWdX2UKGgGR8Bg3G8scyWSaAdLWWgIR0AwBQN0/4ZddX2UKGgGR8BWVrngYP5IaAdLbmgIR0AwCpwS8J2MdX2UKGgGR8Bx2QaJhvzfaAdLeGgIR0AwE3JxNqQBdX2UKGgGR8BiIIDs+mm+aAdLYGgIR0AwHiC8OCoTdX2UKGgGR8BgRPdO6/ZeaAdLPWgIR0AwIIHkcS5BdX2UKGgGR8BrJ/Sa3I+4aAdLeWgIR0AwI2ZiNKh+dX2UKGgGR8A/wQ04zabnaAdLQGgIR0AwMRmbsniOdX2UKGgGR8BgYNRtP558aAdLTmgIR0AwNpNKyv9tdX2UKGgGR8B4O6DdxhlUaAdLcmgIR0AwNj+JgsshdX2UKGgGR8BS4tV3ljmTaAdLXWgIR0AwOKhL5AQhdX2UKGgGR8B2A0KG+K0laAdLYWgIR0AwR8MuvlltdX2UKGgGR8BcB6iTMaCMaAdLYWgIR0AwUNDMNc4YdX2UKGgGR8BvL3ta6jFiaAdLb2gIR0AwWZFG5MDfdX2UKGgGR8BU8et4iX6ZaAdLQWgIR0AwXoUBXCCSdX2UKGgGR8B3NIYgq3EyaAdLjWgIR0AwYPY4ACGOdX2UKGgGR8BtafQ6ZH/caAdLaWgIR0AwZKXv6TGHdX2UKGgGR8B1vEHjZL7GaAdLZWgIR0AwZdLQHAymdX2UKGgGR8B+Sndk8RthaAdLX2gIR0AwZgh8pkPMdX2UKGgGR8BY3FqSHM2WaAdLQWgIR0Awc6mwaBI4dX2UKGgGR8BdsC9Zid8RaAdLU2gIR0Awf5OrQw9JdX2UKGgGR0A1PZ3cHnloaAdLjWgIR0AwjDR+jM3ZdX2UKGgGR8BHN/jKgZjyaAdLQ2gIR0Awk6Mzdk8SdX2UKGgGR8BT6J+lTFVDaAdLPGgIR0AwlgG8mKIjdX2UKGgGR8Bz4W5jH4oJaAdLZGgIR0AwmvrGBFuvdX2UKGgGR8ByJIggX/HYaAdLaGgIR0AwnUUfxMFmdX2UKGgGR8Bnk6H9FWn1aAdLQ2gIR0AwoasZHd43dX2UKGgGR8BiAkA7xNItaAdLkWgIR0AwoXJ5mh/RdX2UKGgGR8Bq90XcgyM2aAdLhWgIR0AwpX6ZYxL1dX2UKGgGR8BG4SCWeHzpaAdLS2gIR0Awq7OE/SpjdX2UKGgGR8BdyFYdQwbmaAdLlWgIR0Awr28IzFdcdX2UKGgGR8BlSzD0lJHzaAdLTmgIR0Aws1WsA/9pdX2UKGgGR8Bss0c2itaIaAdLS2gIR0Awyhi9Zid8dX2UKGgGR8BzJDA6+36RaAdLh2gIR0Awy2oNutOmdX2UKGgGR8B1XFHz6JqJaAdLb2gIR0Aw0ZbILgGbdX2UKGgGR8B3H0dvKlpHaAdLeGgIR0Aw2VlwtJ4CdX2UKGgGR8BfJzreIl+maAdLQGgIR0Aw2V7x/d6+dX2UKGgGR8B2tT4AS39aaAdLa2gIR0Aw3MyJsO5KdX2UKGgGR8B6uAsUZeiSaAdLXGgIR0Aw5YKYzBRAdX2UKGgGR8BsJy+SKWLQaAdLT2gIR0Aw759E1EVndX2UKGgGR8BzQ+ZSeiBYaAdLYWgIR0Aw8iosI3R5dX2UKGgGR8BrP6yt3fQ8aAdLVmgIR0Aw8rgflp49dX2UKGgGR7//luR9w3o+aAdLZWgIR0Aw88A7xNItdX2UKGgGR8BClhJiAlOXaAdLT2gIR0Aw9mh/RVp9dX2UKGgGR8Blb8VclgMMaAdLaWgIR0Aw/uOS4e90dX2UKGgGR8Bw/GkzoEB9aAdLamgIR0AxBgn+hoM8dX2UKGgGR8BrUyTY/Vy4aAdLQGgIR0AxB7HAAQxvdX2UKGgGR8BXeILPUrkKaAdLQWgIR0AxCaaTfR/mdX2UKGgGR8Bv/Sfe1rqMaAdLbWgIR0AxFjUd7v5QdX2UKGgGR8B2n68Zk079aAdLV2gIR0AxI8zyjHn2dX2UKGgGR8BgV+qm0mdBaAdLf2gIR0AxKsOG0u14dX2UKGgGR8BrjpoqTbFkaAdLVWgIR0AxNhky1uzhdX2UKGgGR8Bp3EXFcY65aAdLS2gIR0AxNx0uDjBEdX2UKGgGR8BtwNlmOEM9aAdLR2gIR0AxNvllsguAdX2UKGgGR8BsUseIVM24aAdLbmgIR0AxQiQ1aW5ZdX2UKGgGR8BxRYyN4qwyaAdLTmgIR0AxUiDujRD1dX2UKGgGR8B5iYq/dqL1aAdLX2gIR0AxUTP0I1LrdX2UKGgGR8B34QM7U5MlaAdLfmgIR0AxUi/wiJO4dX2UKGgGR8B3rLRXwLE2aAdLe2gIR0AxUsS00FbFdX2UKGgGR8BbvmjKxLTQaAdLP2gIR0AxU5xBE8aGdX2UKGgGR8BopLhDPWxyaAdLXmgIR0AxWNXYDklvdX2UKGgGR8BaJ2ZuyeI3aAdLa2gIR0AxWNliBoVVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}