--- license: mit language: - en metrics: - accuracy library_name: keras pipeline_tag: video-classification tags: - Body-Language - MediaPipe - OpenCv - .tflite - .pkl --- # Body-Language-Detection-with-MediaPipe-and-OpenCV **This Jupyter Notebook (IPython Notebook) provides the code and instructions for implementing body language detection using [MediaPipe](https://github.com/google/mediapipe) and [OpenCV](https://github.com/opencv/opencv). This innovative tool incorporates two distinct models to achieve its functionality, providing users with a comprehensive approach to body language analysis.** * [Scikit-Learn (.pkl)](https://huggingface.co/ThisIs-Developer/Body-Language-Detection-with-MediaPipe-and-OpenCV#1-scikit-learn-pkl) * [TensorFlow-Keras (.tflite)](https://huggingface.co/ThisIs-Developer/Body-Language-Detection-with-MediaPipe-and-OpenCV#2-tensorflow-keras-tflite) * [Features ⭐](https://huggingface.co/ThisIs-Developer/Body-Language-Detection-with-MediaPipe-and-OpenCV#features-%E2%AD%90) ## 1. Scikit-Learn (.pkl) The first model is built using **Scikit-Learn** and is stored in a **.pkl (Python Pickle) format**. 1. It employs pipelines to encapsulate preprocessing and modeling steps for multiple algorithms. ```python pipelines = { 'lr':make_pipeline(StandardScaler(), LogisticRegression(max_iter=5000)), 'rc':make_pipeline(StandardScaler(), RidgeClassifier()), 'rf':make_pipeline(StandardScaler(), RandomForestClassifier()), 'gb':make_pipeline(StandardScaler(), GradientBoostingClassifier()), } ``` 2. It systematically trains and evaluates different models using accuracy as a metric. ```output lr 0.995260663507109 rc 0.985781990521327 rf 0.9881516587677726 gb 0.9928909952606635 ``` 3. It saves the best-performing model for later use using pickle. ```python with open('body_language.pkl', 'wb') as f: pickle.dump(fit_models['rf'], f) ``` ## 2. TensorFlow-Keras (.tflite) The second model is built using **TensorFlow-Keras** and is stored in a **TensorFlow Lite (.tflite) format**. 1. It Builds and compiles a neural network model for classification. ```python model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ``` 2. It trains the model with relevant metrics. 3. It converts and saves the model in TensorFlow Lite format for mobile deployment. ```python converter = tf.lite.TFLiteConverter.from_keras_model(model) tflite_model = converter.convert() open("body_language.tflite", "wb").write(tflite_model) ``` ## Features ⭐ ### 1. Create the training dataset using both a **Webcam** and **recording video data (.mp4)**, extracting relevant frames, and annotating those frames with corresponding labels. #### View Folder: [Video Decoder](https://github.com/ThisIs-Developer/Body-Language-Detection-with-MediaPipe-and-OpenCV/tree/main/Video%20Decoder) #### Modify the codef for MP4: ```python class_name = "Happy" # Replace 'path_to_your_video_file' with the actual path to your video file cap = cv2.VideoCapture('path_to_your_video_file') # Initiate holistic model with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic: while cap.isOpened(): ret, frame = cap.read() ``` ### 2. Trained models to recognize 10 distinct body language and facial expression categories, enabling the automated recognition of emotions and gestures in videos. #### Class Labels 1. Happy 2. Sad 3. Angry 4. Surprised 5. Confused 6. Tension 7. Surprised 8. Excited 9. Pain 10. Depressed ### 3. Visual representation of different emotional expressions, with each expression depicted in a separate chart or plot using the Matplotlib library in Python. #### Pie plot ![image](https://github.com/ThisIs-Developer/Body-Language-Detection-with-MediaPipe-and-OpenCV/assets/109382325/9562c572-fe44-4982-aa8b-9a9e7a241f52) #### Bar plot ![image](https://github.com/ThisIs-Developer/Body-Language-Detection-with-MediaPipe-and-OpenCV/assets/109382325/b1882a70-f2f8-4f38-ae06-8acfbce5e30f) #### Horizontal bar plot ![image](https://github.com/ThisIs-Developer/Body-Language-Detection-with-MediaPipe-and-OpenCV/assets/109382325/7585391a-8c02-4c8a-87ea-cc4771f6fc09) #### Horizontal bar plot in creasing order of sizes ![image](https://github.com/ThisIs-Developer/Body-Language-Detection-with-MediaPipe-and-OpenCV/assets/109382325/a1776f7f-994d-4fca-97c2-22e03a4f4465) #### Horizontal bar plot with increasing order of sizes ![image](https://github.com/ThisIs-Developer/Body-Language-Detection-with-MediaPipe-and-OpenCV/assets/109382325/4f24a433-daac-4024-90ff-34f00f9c2825)