File size: 2,456 Bytes
9e99f1e 4fe3950 9e99f1e 079419e 4fe3950 9e99f1e 4fe3950 9e99f1e 4fe3950 9e99f1e 4fe3950 9e99f1e 4fe3950 9e99f1e 079419e 9e99f1e 079419e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
- text-generation-inference
base_model: NousResearch/Llama-2-7b-chat-hf
datasets:
- generator
- Thimira/sinhala-llama-2-data-format
model-index:
- name: sinhala-llama-2-7b-chat-hf
results: []
language:
- si
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sinhala-llama-2-7b-chat-hf
This model is a fine-tuned version of [NousResearch/Llama-2-7b-chat-hf](https://huggingface.co/NousResearch/Llama-2-7b-chat-hf) on the [Thimira/sinhala-llama-2-data-format](https://huggingface.co/datasets/Thimira/sinhala-llama-2-data-format) dataset.
## Model description
This is a model for Sinhala language text generation which is fine-tuned from the base llama-2-7b-chat-hf model.
Currently the capabilities of themodel are extremely limited, and requires further data and fine-tuning to be useful. Feel free to experiment with the model and provide feedback.
### Usage example
```
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
tokenizer = AutoTokenizer.from_pretrained("Thimira/sinhala-llama-2-7b-chat-hf")
model = AutoModelForCausalLM.from_pretrained("Thimira/sinhala-llama-2-7b-chat-hf")
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
prompt = "ඔබට සිංහල භාෂාව තේරුම් ගත හැකිද?"
result = pipe(f"<s>[INST] {prompt} [/INST]")
print(result[0]['generated_text'])
```
## Intended uses & limitations
The Sinhala-LLaMA models are intended for assistant-like chat in the Sinhala language.
To get the expected features and performance from these models the LLaMA 2 prompt format needs to be followed, including the INST and <<SYS>> tags, BOS and EOS tokens, and the whitespaces and breaklines in between.
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.1.0
- Datasets 2.18.0
- Tokenizers 0.15.2 |