--- base_model: facebook/wav2vec2-base datasets: - vivos license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: wav2vec2-vivos results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: vivos type: vivos config: default split: None args: default metrics: - type: wer value: 0.23636599442318915 name: Wer --- # wav2vec2-vivos This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the vivos dataset. It achieves the following results on the evaluation set: - Loss: 0.4755 - Wer: 0.2364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.349 | 2.0 | 146 | 0.9904 | 0.6088 | | 0.718 | 4.0 | 292 | 0.6959 | 0.4630 | | 0.4692 | 6.0 | 438 | 0.5304 | 0.3414 | | 0.3385 | 8.0 | 584 | 0.5078 | 0.3216 | | 0.2627 | 10.0 | 730 | 0.4659 | 0.2788 | | 0.2033 | 12.0 | 876 | 0.4751 | 0.2656 | | 0.1699 | 14.0 | 1022 | 0.4659 | 0.2519 | | 0.1688 | 16.0 | 1168 | 0.4662 | 0.2394 | | 0.1269 | 18.0 | 1314 | 0.4707 | 0.2375 | | 0.1162 | 20.0 | 1460 | 0.4755 | 0.2364 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1