File size: 2,284 Bytes
6547621 d1460aa e2fca9e d1460aa e2fca9e b2db3f3 d1460aa e2fca9e d1460aa 8d1ae01 6547621 e2fca9e 6547621 e2fca9e 6547621 e2fca9e 8d1ae01 6547621 e2fca9e 6547621 e2fca9e 6547621 e2fca9e 6547621 e2fca9e 6547621 e2fca9e 6547621 e2fca9e 6547621 e2fca9e 6547621 e2fca9e 6547621 e2fca9e 937120d e2fca9e 8d1ae01 e2fca9e 8d1ae01 d1460aa e2fca9e 6547621 e2fca9e 6547621 8d1ae01 6547621 e2fca9e 6547621 8d1ae01 e2fca9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- vivos
metrics:
- wer
model-index:
- name: wav2vec2-vivos-asr
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: vivos
type: vivos
config: default
split: None
args: default
metrics:
- name: Wer
type: wer
value: 0.23381058715355313
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-vivos-asr
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the vivos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3492
- Wer: 0.2338
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 8.4226 | 2.0548 | 150 | 4.9423 | 1.0 |
| 3.59 | 4.1096 | 300 | 3.6898 | 1.0 |
| 3.4271 | 6.1644 | 450 | 3.5183 | 1.0 |
| 2.6948 | 8.2192 | 600 | 1.2770 | 0.8026 |
| 0.7372 | 10.2740 | 750 | 0.5197 | 0.3625 |
| 0.4012 | 12.3288 | 900 | 0.4108 | 0.2911 |
| 0.2974 | 14.3836 | 1050 | 0.3732 | 0.2604 |
| 0.2737 | 16.4384 | 1200 | 0.3550 | 0.2393 |
| 0.2108 | 18.4932 | 1350 | 0.3565 | 0.2434 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
|