File size: 2,842 Bytes
6547621 e2fca9e a6384aa e2fca9e a6384aa e2fca9e a6384aa e2fca9e a6384aa 48c5874 a6384aa 6547621 e2fca9e 6547621 48c5874 e2fca9e 6547621 e2fca9e 48c5874 6547621 e2fca9e 6547621 e2fca9e 6547621 e2fca9e 6547621 e2fca9e 6547621 e2fca9e 6547621 e2fca9e 6547621 e2fca9e 6547621 e2fca9e 6547621 e2fca9e 48c5874 e2fca9e 6547621 e2fca9e 6547621 e2fca9e 48c5874 6547621 e2fca9e 6547621 e2fca9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
base_model: facebook/wav2vec2-base
datasets:
- vivos
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-vivos-asr
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: vivos
type: vivos
config: default
split: None
args: default
metrics:
- type: wer
value: 0.46007853403141363
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/khackho01125-CMC-University/Wav2Vec2/runs/abof73b7)
# wav2vec2-vivos-asr
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the vivos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9791
- Wer: 0.4601
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.0539 | 2.0 | 292 | 3.6334 | 1.0 |
| 3.4484 | 4.0 | 584 | 3.5348 | 1.0 |
| 3.2755 | 6.0 | 876 | 2.4805 | 0.9952 |
| 1.6061 | 8.0 | 1168 | 1.2597 | 0.7021 |
| 1.0363 | 10.0 | 1460 | 1.0996 | 0.6158 |
| 0.8403 | 12.0 | 1752 | 0.9858 | 0.5573 |
| 0.726 | 14.0 | 2044 | 0.9625 | 0.5302 |
| 0.6721 | 16.0 | 2336 | 0.9326 | 0.5124 |
| 0.5697 | 18.0 | 2628 | 0.9399 | 0.5012 |
| 0.5168 | 20.0 | 2920 | 0.9625 | 0.4930 |
| 0.4663 | 22.0 | 3212 | 0.9432 | 0.4751 |
| 0.4408 | 24.0 | 3504 | 0.9822 | 0.4723 |
| 0.4231 | 26.0 | 3796 | 0.9629 | 0.4643 |
| 0.3855 | 28.0 | 4088 | 0.9744 | 0.4639 |
| 0.3671 | 30.0 | 4380 | 0.9791 | 0.4601 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
|