File size: 1,752 Bytes
413622f
1cf7d1e
da99e53
1cf7d1e
 
da99e53
 
e0efb69
 
 
413622f
 
e0efb69
 
413622f
e0efb69
413622f
1cf7d1e
 
 
 
 
413622f
e0efb69
413622f
e0efb69
413622f
e0efb69
413622f
e0efb69
413622f
e0efb69
413622f
e0efb69
413622f
e0efb69
413622f
e0efb69
413622f
e0efb69
1cf7d1e
 
e0efb69
 
 
 
1cf7d1e
e0efb69
 
413622f
e0efb69
413622f
1cf7d1e
 
 
 
 
 
413622f
 
e0efb69
413622f
e0efb69
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
base_model: Thienpkae/wav2vec2-large-xls-r-vi-colab
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xls-r-vi-colab
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-vi-colab

This model is a fine-tuned version of [Thienpkae/wav2vec2-large-xls-r-vi-colab](https://huggingface.co/Thienpkae/wav2vec2-large-xls-r-vi-colab) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8989
- Wer: 0.9376
- Cer: 0.3861

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 330
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 3.533         | 7.5   | 165  | 3.3635          | 1.0    | 1.0    |
| 3.5135        | 15.0  | 330  | 3.3336          | 1.0    | 1.0    |
| 3.6414        | 22.5  | 495  | 3.0578          | 0.9995 | 0.8722 |
| 2.1098        | 30.0  | 660  | 1.8989          | 0.9376 | 0.3861 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1