File size: 1,752 Bytes
413622f 1cf7d1e da99e53 1cf7d1e da99e53 e0efb69 413622f e0efb69 413622f e0efb69 413622f 1cf7d1e 413622f e0efb69 413622f e0efb69 413622f e0efb69 413622f e0efb69 413622f e0efb69 413622f e0efb69 413622f e0efb69 413622f e0efb69 413622f e0efb69 1cf7d1e e0efb69 1cf7d1e e0efb69 413622f e0efb69 413622f 1cf7d1e 413622f e0efb69 413622f e0efb69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
base_model: Thienpkae/wav2vec2-large-xls-r-vi-colab
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xls-r-vi-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-vi-colab
This model is a fine-tuned version of [Thienpkae/wav2vec2-large-xls-r-vi-colab](https://huggingface.co/Thienpkae/wav2vec2-large-xls-r-vi-colab) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8989
- Wer: 0.9376
- Cer: 0.3861
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 330
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 3.533 | 7.5 | 165 | 3.3635 | 1.0 | 1.0 |
| 3.5135 | 15.0 | 330 | 3.3336 | 1.0 | 1.0 |
| 3.6414 | 22.5 | 495 | 3.0578 | 0.9995 | 0.8722 |
| 2.1098 | 30.0 | 660 | 1.8989 | 0.9376 | 0.3861 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|