TheBloke commited on
Commit
d12e1f8
1 Parent(s): 60f2f9b

Upload new GPTQs with varied parameters

Browse files
Files changed (1) hide show
  1. README.md +72 -29
README.md CHANGED
@@ -19,45 +19,82 @@ license: other
19
 
20
  # LmSys' Vicuna 13B v1.3 GPTQ
21
 
22
- These files are GPTQ 4bit model files for [LmSys' Vicuna 13B v1.3](https://huggingface.co/lmsys/vicuna-13b-v1.3).
23
 
24
- It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
25
 
26
- **NOTE**: This model was recently updated by the LmSys Team. If you already downloaded Vicuna 13B v1.3 GPTQ or GGML, you may want to re-download it from this repo, as the weights were updated. The original model I uploaded has been renamed to v1.3-preview.
27
 
28
  ## Repositories available
29
 
30
- * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/vicuna-13b-v1.3.0-GPTQ)
31
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/vicuna-13b-v1.3.0-GGML)
32
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lmsys/vicuna-13b-v1.3)
33
 
34
- ## How to easily download and use this model in text-generation-webui
35
 
36
- Please make sure you're using the latest version of text-generation-webui
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  1. Click the **Model tab**.
39
  2. Under **Download custom model or LoRA**, enter `TheBloke/vicuna-13b-v1.3.0-GPTQ`.
 
 
40
  3. Click **Download**.
41
  4. The model will start downloading. Once it's finished it will say "Done"
42
  5. In the top left, click the refresh icon next to **Model**.
43
  6. In the **Model** dropdown, choose the model you just downloaded: `vicuna-13b-v1.3.0-GPTQ`
44
  7. The model will automatically load, and is now ready for use!
45
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
46
- * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
47
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
48
 
49
  ## How to use this GPTQ model from Python code
50
 
51
  First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
52
 
53
- `pip install auto-gptq`
54
 
55
  Then try the following example code:
56
 
57
  ```python
58
  from transformers import AutoTokenizer, pipeline, logging
59
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
60
- import argparse
61
 
62
  model_name_or_path = "TheBloke/vicuna-13b-v1.3.0-GPTQ"
63
  model_basename = "vicuna-13b-v1.3.0-GPTQ-4bit-128g.no-act.order"
@@ -67,17 +104,32 @@ use_triton = False
67
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
68
 
69
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
70
- model_basename=model_basename,
71
  use_safetensors=True,
72
- trust_remote_code=False,
73
  device="cuda:0",
74
  use_triton=use_triton,
75
  quantize_config=None)
76
 
77
- # Note: check the prompt template is correct for this model.
 
 
 
 
 
 
 
 
 
 
 
78
  prompt = "Tell me about AI"
79
- prompt_template=f'''USER: {prompt}
80
- ASSISTANT:'''
 
 
 
 
81
 
82
  print("\n\n*** Generate:")
83
 
@@ -104,20 +156,11 @@ pipe = pipeline(
104
  print(pipe(prompt_template)[0]['generated_text'])
105
  ```
106
 
107
- ## Provided files
108
-
109
- **vicuna-13b-v1.3.0-GPTQ-4bit-128g.no-act.order.safetensors**
110
-
111
- This will work with AutoGPTQ, ExLlama, and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.
112
 
113
- It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed.
114
 
115
- * `vicuna-13b-v1.3.0-GPTQ-4bit-128g.no-act.order.safetensors`
116
- * Works with AutoGPTQ in CUDA or Triton modes.
117
- * LLaMa models also work with [ExLlama](https://github.com/turboderp/exllama}, which usually provides much higher performance, and uses less VRAM, than AutoGPTQ.
118
- * Works with GPTQ-for-LLaMa in CUDA mode. May have issues with GPTQ-for-LLaMa Triton mode.
119
- * Works with text-generation-webui, including one-click-installers.
120
- * Parameters: Groupsize = 128. Act Order / desc_act = False.
121
 
122
  <!-- footer start -->
123
  ## Discord
@@ -139,9 +182,9 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
139
  * Patreon: https://patreon.com/TheBlokeAI
140
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
141
 
142
- **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
143
 
144
- **Patreon special mentions**: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire.
145
 
146
  Thank you to all my generous patrons and donaters!
147
 
@@ -186,7 +229,7 @@ See more details in the "Training Details of Vicuna Models" section in the appen
186
 
187
  ## Evaluation
188
 
189
- Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf).
190
 
191
  ## Difference between different versions of Vicuna
192
  See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
 
19
 
20
  # LmSys' Vicuna 13B v1.3 GPTQ
21
 
22
+ These files are GPTQ model files for [LmSys' Vicuna 13B v1.3](https://huggingface.co/lmsys/vicuna-13b-v1.3).
23
 
24
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
25
 
26
+ These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate).
27
 
28
  ## Repositories available
29
 
30
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/vicuna-13b-v1.3.0-GPTQ)
31
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/vicuna-13b-v1.3.0-GGML)
32
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lmsys/vicuna-13b-v1.3)
33
 
34
+ ## Prompt template: Vicuna
35
 
36
+ ```
37
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
38
+
39
+ USER: {prompt}
40
+ ASSISTANT:
41
+
42
+ ```
43
+
44
+ ## Provided files
45
+
46
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
47
+
48
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
49
+
50
+ | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
51
+ | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
52
+ | main | 4 | 128 | False | 7.45 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
53
+ | gptq-4bit-32g-actorder_True | 4 | 32 | 1 | 8.00 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
54
+ | gptq-4bit-64g-actorder_True | 4 | 64 | 1 | 7.51 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
55
+ | gptq-4bit-128g-actorder_True | 4 | 128 | 1 | 7.26 GB | True | AutoGPTQ | 4-bit, with Act Order androup size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
56
+ | gptq-8bit--1g-actorder_True | 8 | None | 1 | 13.36 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
57
+ | gptq-8bit-128g-actorder_False | 8 | 128 | 0 | 13.65 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
58
+
59
+ ## How to download from branches
60
+
61
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/vicuna-13b-v1.3.0-GPTQ:gptq-4bit-32g-actorder_True`
62
+ - With Git, you can clone a branch with:
63
+ ```
64
+ git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/vicuna-13b-v1.3.0-GPTQ`
65
+ ```
66
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
67
+
68
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
69
+
70
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
71
+
72
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
73
 
74
  1. Click the **Model tab**.
75
  2. Under **Download custom model or LoRA**, enter `TheBloke/vicuna-13b-v1.3.0-GPTQ`.
76
+ - To download from a specific branch, enter for example `TheBloke/vicuna-13b-v1.3.0-GPTQ:gptq-4bit-32g-actorder_True`
77
+ - see Provided Files above for the list of branches for each option.
78
  3. Click **Download**.
79
  4. The model will start downloading. Once it's finished it will say "Done"
80
  5. In the top left, click the refresh icon next to **Model**.
81
  6. In the **Model** dropdown, choose the model you just downloaded: `vicuna-13b-v1.3.0-GPTQ`
82
  7. The model will automatically load, and is now ready for use!
83
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
84
+ * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
85
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
86
 
87
  ## How to use this GPTQ model from Python code
88
 
89
  First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
90
 
91
+ `GITHUB_ACTIONS=true pip install auto-gptq`
92
 
93
  Then try the following example code:
94
 
95
  ```python
96
  from transformers import AutoTokenizer, pipeline, logging
97
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
 
98
 
99
  model_name_or_path = "TheBloke/vicuna-13b-v1.3.0-GPTQ"
100
  model_basename = "vicuna-13b-v1.3.0-GPTQ-4bit-128g.no-act.order"
 
104
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
105
 
106
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
107
+ model_basename=model_basename
108
  use_safetensors=True,
109
+ trust_remote_code=True,
110
  device="cuda:0",
111
  use_triton=use_triton,
112
  quantize_config=None)
113
 
114
+ """
115
+ To download from a specific branch, use the revision parameter, as in this example:
116
+
117
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
118
+ revision="gptq-4bit-32g-actorder_True",
119
+ model_basename=model_basename,
120
+ use_safetensors=True,
121
+ trust_remote_code=True,
122
+ device="cuda:0",
123
+ quantize_config=None)
124
+ """
125
+
126
  prompt = "Tell me about AI"
127
+ prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
128
+
129
+ USER: {prompt}
130
+ ASSISTANT:
131
+
132
+ '''
133
 
134
  print("\n\n*** Generate:")
135
 
 
156
  print(pipe(prompt_template)[0]['generated_text'])
157
  ```
158
 
159
+ ## Compatibility
 
 
 
 
160
 
161
+ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
162
 
163
+ ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
 
 
164
 
165
  <!-- footer start -->
166
  ## Discord
 
182
  * Patreon: https://patreon.com/TheBlokeAI
183
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
184
 
185
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
186
 
187
+ **Patreon special mentions**: Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang.
188
 
189
  Thank you to all my generous patrons and donaters!
190
 
 
229
 
230
  ## Evaluation
231
 
232
+ Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard).
233
 
234
  ## Difference between different versions of Vicuna
235
  See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)