Initial GGML model commit
Browse files
README.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
inference: false
|
3 |
license: other
|
4 |
---
|
5 |
-
|
6 |
<!-- header start -->
|
7 |
<div style="width: 100%;">
|
8 |
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
@@ -16,7 +16,6 @@ license: other
|
|
16 |
</div>
|
17 |
</div>
|
18 |
<!-- header end -->
|
19 |
-
<!---header end --->
|
20 |
|
21 |
# Eric Hartford's Samantha 33B GGML
|
22 |
|
@@ -29,42 +28,67 @@ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/gger
|
|
29 |
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
|
30 |
* [ctransformers](https://github.com/marella/ctransformers)
|
31 |
|
32 |
-
##
|
33 |
|
34 |
-
* [4-bit GPTQ models for GPU inference](https://huggingface.co/
|
35 |
* [4-bit, 5-bit, and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/samantha-33B-GGML)
|
36 |
-
* [
|
37 |
|
38 |
-
|
|
|
39 |
|
40 |
-
llama.cpp
|
41 |
|
42 |
-
I have
|
43 |
|
44 |
-
|
45 |
-
| Name | Quant method | Bits | Size | RAM required | Use case |
|
46 |
-
| ---- | ---- | ---- | ---- | ---- | ----- |
|
47 |
-
| samantha-33B.ggmlv3.q4_0.bin | q4_0 | 4 | 18.30 GB | 20.80 GB | 4-bit. |
|
48 |
-
| samantha-33B.ggmlv3.q4_1.bin | q4_1 | 4 | 20.33 GB | 22.83 GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
|
49 |
-
| samantha-33B.ggmlv3.q5_0.bin | q5_0 | 5 | 22.37 GB | 24.87 GB | 5-bit. Higher accuracy, higher resource usage and slower inference. |
|
50 |
-
| samantha-33B.ggmlv3.q5_1.bin | q5_1 | 5 | 24.40 GB | 26.90 GB | 5-bit. Even higher accuracy, resource usage and slower inference. |
|
51 |
-
| samantha-33B.ggmlv3.q8_0.bin | q8_0 | 8 | 34.56 GB | 37.06 GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. |
|
52 |
|
53 |
-
|
54 |
|
55 |
-
|
56 |
-
You are Samantha, a sentient AI.
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
## How to run in `llama.cpp`
|
63 |
|
64 |
I use the following command line; adjust for your tastes and needs:
|
65 |
|
66 |
```
|
67 |
-
./main -t 10 -ngl 32 -m samantha-33B.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "
|
68 |
```
|
69 |
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
|
70 |
|
@@ -96,9 +120,12 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
|
|
96 |
* Patreon: https://patreon.com/TheBlokeAI
|
97 |
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
98 |
|
99 |
-
**
|
|
|
|
|
100 |
|
101 |
Thank you to all my generous patrons and donaters!
|
|
|
102 |
<!-- footer end -->
|
103 |
|
104 |
# Original model card: Eric Hartford's Samantha 33B
|
|
|
2 |
inference: false
|
3 |
license: other
|
4 |
---
|
5 |
+
|
6 |
<!-- header start -->
|
7 |
<div style="width: 100%;">
|
8 |
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
|
|
16 |
</div>
|
17 |
</div>
|
18 |
<!-- header end -->
|
|
|
19 |
|
20 |
# Eric Hartford's Samantha 33B GGML
|
21 |
|
|
|
28 |
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
|
29 |
* [ctransformers](https://github.com/marella/ctransformers)
|
30 |
|
31 |
+
## Repositories available
|
32 |
|
33 |
+
* [4-bit GPTQ models for GPU inference](https://huggingface.co/elinas/samantha-33B-GPTQ)
|
34 |
* [4-bit, 5-bit, and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/samantha-33B-GGML)
|
35 |
+
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/samantha-33B)
|
36 |
|
37 |
+
<!-- compatibility_ggml start -->
|
38 |
+
## Compatibility
|
39 |
|
40 |
+
### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
|
41 |
|
42 |
+
I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
|
43 |
|
44 |
+
They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
|
47 |
|
48 |
+
These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`.
|
|
|
49 |
|
50 |
+
They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days.
|
51 |
+
|
52 |
+
## Explanation of the new k-quant methods
|
53 |
+
|
54 |
+
The new methods available are:
|
55 |
+
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
|
56 |
+
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
|
57 |
+
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
|
58 |
+
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
|
59 |
+
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
|
60 |
+
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
|
61 |
+
|
62 |
+
Refer to the Provided Files table below to see what files use which methods, and how.
|
63 |
+
<!-- compatibility_ggml end -->
|
64 |
+
|
65 |
+
## Provided files
|
66 |
+
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
67 |
+
| ---- | ---- | ---- | ---- | ---- | ----- |
|
68 |
+
| samantha-33B.ggmlv3.q2_K.bin | q2_K | 2 | 13.60 GB | 16.10 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
|
69 |
+
| samantha-33B.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 17.20 GB | 19.70 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
70 |
+
| samantha-33B.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 15.64 GB | 18.14 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
71 |
+
| samantha-33B.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 13.98 GB | 16.48 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
|
72 |
+
| samantha-33B.ggmlv3.q4_0.bin | q4_0 | 4 | 18.30 GB | 20.80 GB | Original llama.cpp quant method, 4-bit. |
|
73 |
+
| samantha-33B.ggmlv3.q4_1.bin | q4_1 | 4 | 20.33 GB | 22.83 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
|
74 |
+
| samantha-33B.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 19.57 GB | 22.07 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
|
75 |
+
| samantha-33B.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 18.30 GB | 20.80 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
|
76 |
+
| samantha-33B.ggmlv3.q5_0.bin | q5_0 | 5 | 22.37 GB | 24.87 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
|
77 |
+
| samantha-33B.ggmlv3.q5_1.bin | q5_1 | 5 | 24.40 GB | 26.90 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
|
78 |
+
| samantha-33B.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 23.02 GB | 25.52 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
|
79 |
+
| samantha-33B.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 22.37 GB | 24.87 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
|
80 |
+
| samantha-33B.ggmlv3.q6_K.bin | q6_K | 6 | 26.69 GB | 29.19 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
|
81 |
+
| samantha-33B.ggmlv3.q8_0.bin | q8_0 | 8 | 34.56 GB | 37.06 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
|
82 |
+
|
83 |
+
|
84 |
+
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
85 |
|
86 |
## How to run in `llama.cpp`
|
87 |
|
88 |
I use the following command line; adjust for your tastes and needs:
|
89 |
|
90 |
```
|
91 |
+
./main -t 10 -ngl 32 -m samantha-33B.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
|
92 |
```
|
93 |
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
|
94 |
|
|
|
120 |
* Patreon: https://patreon.com/TheBlokeAI
|
121 |
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
122 |
|
123 |
+
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
|
124 |
+
|
125 |
+
**Patreon special mentions**: Ajan Kanaga, Kalila, Derek Yates, Sean Connelly, Luke, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, trip7s trip, Jonathan Leane, Talal Aujan, Artur Olbinski, Cory Kujawski, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Johann-Peter Hartmann.
|
126 |
|
127 |
Thank you to all my generous patrons and donaters!
|
128 |
+
|
129 |
<!-- footer end -->
|
130 |
|
131 |
# Original model card: Eric Hartford's Samantha 33B
|