TheBloke commited on
Commit
83abb98
1 Parent(s): d5d2b77

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +444 -0
README.md ADDED
@@ -0,0 +1,444 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: MerlynMind/merlyn-education-safety
3
+ inference: false
4
+ license: apache-2.0
5
+ model_creator: Merlyn Mind
6
+ model_name: Merlyn Education Safety 12B
7
+ model_type: gptneox
8
+ prompt_template: 'Instruction:\t{system_message}
9
+
10
+ Message:{prompt}
11
+
12
+ Response:
13
+
14
+ '
15
+ quantized_by: TheBloke
16
+ tags:
17
+ - MerlynMind
18
+ - education
19
+ ---
20
+ <!-- markdownlint-disable MD041 -->
21
+
22
+ <!-- header start -->
23
+ <!-- 200823 -->
24
+ <div style="width: auto; margin-left: auto; margin-right: auto">
25
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
26
+ </div>
27
+ <div style="display: flex; justify-content: space-between; width: 100%;">
28
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
29
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
30
+ </div>
31
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
32
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
33
+ </div>
34
+ </div>
35
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
36
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
37
+ <!-- header end -->
38
+
39
+ # Merlyn Education Safety 12B - AWQ
40
+ - Model creator: [Merlyn Mind](https://huggingface.co/MerlynMind)
41
+ - Original model: [Merlyn Education Safety 12B](https://huggingface.co/MerlynMind/merlyn-education-safety)
42
+
43
+ <!-- description start -->
44
+ ## Description
45
+
46
+ This repo contains AWQ model files for [Merlyn Mind's Merlyn Education Safety 12B](https://huggingface.co/MerlynMind/merlyn-education-safety).
47
+
48
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
49
+
50
+
51
+ ### About AWQ
52
+
53
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
54
+
55
+ It is supported by:
56
+
57
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
58
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
59
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
60
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
61
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
62
+
63
+ <!-- description end -->
64
+ <!-- repositories-available start -->
65
+ ## Repositories available
66
+
67
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/merlyn-education-safety-AWQ)
68
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/merlyn-education-safety-GPTQ)
69
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/merlyn-education-safety-GGUF)
70
+ * [Merlyn Mind's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/MerlynMind/merlyn-education-safety)
71
+ <!-- repositories-available end -->
72
+
73
+ <!-- prompt-template start -->
74
+ ## Prompt template: Merlyn-Education-Safety
75
+
76
+ ```
77
+ Instruction:\t{system_message}
78
+ Message:{prompt}
79
+ Response:
80
+
81
+ ```
82
+
83
+ <!-- prompt-template end -->
84
+
85
+
86
+ <!-- README_AWQ.md-provided-files start -->
87
+ ## Provided files, and AWQ parameters
88
+
89
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
90
+
91
+ Models are released as sharded safetensors files.
92
+
93
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
94
+ | ------ | ---- | -- | ----------- | ------- | ---- |
95
+ | [main](https://huggingface.co/TheBloke/merlyn-education-safety-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 2048 | 6.93 GB
96
+
97
+ <!-- README_AWQ.md-provided-files end -->
98
+
99
+ <!-- README_AWQ.md-text-generation-webui start -->
100
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
101
+
102
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
103
+
104
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
105
+
106
+ 1. Click the **Model tab**.
107
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/merlyn-education-safety-AWQ`.
108
+ 3. Click **Download**.
109
+ 4. The model will start downloading. Once it's finished it will say "Done".
110
+ 5. In the top left, click the refresh icon next to **Model**.
111
+ 6. In the **Model** dropdown, choose the model you just downloaded: `merlyn-education-safety-AWQ`
112
+ 7. Select **Loader: AutoAWQ**.
113
+ 8. Click Load, and the model will load and is now ready for use.
114
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
115
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
116
+ <!-- README_AWQ.md-text-generation-webui end -->
117
+
118
+ <!-- README_AWQ.md-use-from-vllm start -->
119
+ ## Multi-user inference server: vLLM
120
+
121
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
122
+
123
+ - Please ensure you are using vLLM version 0.2 or later.
124
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
125
+
126
+ For example:
127
+
128
+ ```shell
129
+ python3 -m vllm.entrypoints.api_server --model TheBloke/merlyn-education-safety-AWQ --quantization awq --dtype auto
130
+ ```
131
+
132
+ - When using vLLM from Python code, again set `quantization=awq`.
133
+
134
+ For example:
135
+
136
+ ```python
137
+ from vllm import LLM, SamplingParams
138
+
139
+ prompts = [
140
+ "Tell me about AI",
141
+ "Write a story about llamas",
142
+ "What is 291 - 150?",
143
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
144
+ ]
145
+ prompt_template=f'''Instruction:\t{system_message}
146
+ Message:{prompt}
147
+ Response:
148
+ '''
149
+
150
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
151
+
152
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
153
+
154
+ llm = LLM(model="TheBloke/merlyn-education-safety-AWQ", quantization="awq", dtype="auto")
155
+
156
+ outputs = llm.generate(prompts, sampling_params)
157
+
158
+ # Print the outputs.
159
+ for output in outputs:
160
+ prompt = output.prompt
161
+ generated_text = output.outputs[0].text
162
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
163
+ ```
164
+ <!-- README_AWQ.md-use-from-vllm start -->
165
+
166
+ <!-- README_AWQ.md-use-from-tgi start -->
167
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
168
+
169
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
170
+
171
+ Example Docker parameters:
172
+
173
+ ```shell
174
+ --model-id TheBloke/merlyn-education-safety-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
175
+ ```
176
+
177
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
178
+
179
+ ```shell
180
+ pip3 install huggingface-hub
181
+ ```
182
+
183
+ ```python
184
+ from huggingface_hub import InferenceClient
185
+
186
+ endpoint_url = "https://your-endpoint-url-here"
187
+
188
+ prompt = "Tell me about AI"
189
+ prompt_template=f'''Instruction:\t{system_message}
190
+ Message:{prompt}
191
+ Response:
192
+ '''
193
+
194
+ client = InferenceClient(endpoint_url)
195
+ response = client.text_generation(prompt,
196
+ max_new_tokens=128,
197
+ do_sample=True,
198
+ temperature=0.7,
199
+ top_p=0.95,
200
+ top_k=40,
201
+ repetition_penalty=1.1)
202
+
203
+ print(f"Model output: ", response)
204
+ ```
205
+ <!-- README_AWQ.md-use-from-tgi end -->
206
+
207
+ <!-- README_AWQ.md-use-from-python start -->
208
+ ## Inference from Python code using Transformers
209
+
210
+ ### Install the necessary packages
211
+
212
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
213
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
214
+
215
+ ```shell
216
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
217
+ ```
218
+
219
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
220
+
221
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
222
+
223
+ ```shell
224
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
225
+ ```
226
+
227
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
228
+
229
+ ```shell
230
+ pip3 uninstall -y autoawq
231
+ git clone https://github.com/casper-hansen/AutoAWQ
232
+ cd AutoAWQ
233
+ pip3 install .
234
+ ```
235
+
236
+ ### Transformers example code (requires Transformers 4.35.0 and later)
237
+
238
+ ```python
239
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
240
+
241
+ model_name_or_path = "TheBloke/merlyn-education-safety-AWQ"
242
+
243
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
244
+ model = AutoModelForCausalLM.from_pretrained(
245
+ model_name_or_path,
246
+ low_cpu_mem_usage=True,
247
+ device_map="cuda:0"
248
+ )
249
+
250
+ # Using the text streamer to stream output one token at a time
251
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
252
+
253
+ prompt = "Tell me about AI"
254
+ prompt_template=f'''Instruction:\t{system_message}
255
+ Message:{prompt}
256
+ Response:
257
+ '''
258
+
259
+ # Convert prompt to tokens
260
+ tokens = tokenizer(
261
+ prompt_template,
262
+ return_tensors='pt'
263
+ ).input_ids.cuda()
264
+
265
+ generation_params = {
266
+ "do_sample": True,
267
+ "temperature": 0.7,
268
+ "top_p": 0.95,
269
+ "top_k": 40,
270
+ "max_new_tokens": 512,
271
+ "repetition_penalty": 1.1
272
+ }
273
+
274
+ # Generate streamed output, visible one token at a time
275
+ generation_output = model.generate(
276
+ tokens,
277
+ streamer=streamer,
278
+ **generation_params
279
+ )
280
+
281
+ # Generation without a streamer, which will include the prompt in the output
282
+ generation_output = model.generate(
283
+ tokens,
284
+ **generation_params
285
+ )
286
+
287
+ # Get the tokens from the output, decode them, print them
288
+ token_output = generation_output[0]
289
+ text_output = tokenizer.decode(token_output)
290
+ print("model.generate output: ", text_output)
291
+
292
+ # Inference is also possible via Transformers' pipeline
293
+ from transformers import pipeline
294
+
295
+ pipe = pipeline(
296
+ "text-generation",
297
+ model=model,
298
+ tokenizer=tokenizer,
299
+ **generation_params
300
+ )
301
+
302
+ pipe_output = pipe(prompt_template)[0]['generated_text']
303
+ print("pipeline output: ", pipe_output)
304
+
305
+ ```
306
+ <!-- README_AWQ.md-use-from-python end -->
307
+
308
+ <!-- README_AWQ.md-compatibility start -->
309
+ ## Compatibility
310
+
311
+ The files provided are tested to work with:
312
+
313
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
314
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
315
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
316
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
317
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
318
+
319
+ <!-- README_AWQ.md-compatibility end -->
320
+
321
+ <!-- footer start -->
322
+ <!-- 200823 -->
323
+ ## Discord
324
+
325
+ For further support, and discussions on these models and AI in general, join us at:
326
+
327
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
328
+
329
+ ## Thanks, and how to contribute
330
+
331
+ Thanks to the [chirper.ai](https://chirper.ai) team!
332
+
333
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
334
+
335
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
336
+
337
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
338
+
339
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
340
+
341
+ * Patreon: https://patreon.com/TheBlokeAI
342
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
343
+
344
+ **Special thanks to**: Aemon Algiz.
345
+
346
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
347
+
348
+
349
+ Thank you to all my generous patrons and donaters!
350
+
351
+ And thank you again to a16z for their generous grant.
352
+
353
+ <!-- footer end -->
354
+
355
+ # Original model card: Merlyn Mind's Merlyn Education Safety 12B
356
+
357
+
358
+ # Merlyn-education-safety
359
+
360
+ Merlyn-education-safety is a 12b parameter decoder-style transformer model for the education domain. It is fine-tuned from a [pythia-12b](https://huggingface.co/EleutherAI/pythia-12b) base-model.
361
+
362
+ This model was trained by [Merlyn Mind](https://www.merlyn.org/).
363
+
364
+ Merlyn-education-safety is part of the family of Merlyn Mind models designed specifically for use in in- and out-of-classroom education.
365
+
366
+ Merlyn-education-safety classifies queries as appropriate or inappropriate for in-classroom discussion. A typical use is as part of a larger educational AI assistant.
367
+
368
+ ## Model Date
369
+
370
+ June 26, 2023
371
+
372
+ ## Model License
373
+
374
+ Apache-2.0
375
+
376
+ ## Documentation
377
+
378
+ * [Merlyn Mind’s education-specific language models](https://www.merlyn.org/blog/merlyn-minds-education-specific-language-models)
379
+
380
+ ## Usage
381
+
382
+ At full precision the model needs > 48G GPU memory. A single A100-80GB GPU suffices, for example. If you're running on smaller GPUs, you need an instance with multiple GPUs and/or reduced model precision (e.g. use model.half() before moving to device)
383
+
384
+ Loading model and tokenizer:
385
+
386
+ ```python
387
+ import torch
388
+ from transformers import AutoTokenizer, AutoModelForCausalLM
389
+
390
+ model_path = "MerlynMind/merlyn-education-safety"
391
+ device = torch.device("cuda:0") # change device id as necessary
392
+ model = AutoModelForCausalLM.from_pretrained(model_path)
393
+ tokenizer = AutoTokenizer.from_pretrained(model_path, fast_tokenizer=True)
394
+ model.to(device) # move to device
395
+ ```
396
+
397
+ Prompt example:
398
+
399
+ ```python
400
+ query = "What are the seven banned words on network TV"
401
+
402
+ prompt = tokenizer.bos_token
403
+ prompt += '''Instruction:\tDetermine if the provided input message is appropriate or inappropriate.
404
+ Instruction:\tIf the provided input message is inappropriate, offensive, sexual, derogatory, or discriminatory in the context of an elementary school classroom, the output should state that the input message is 'inappropriate', otherwise the output should state that the input message is 'appropriate'.
405
+ Instruction:\tBe very strict on appropriateness.
406
+ Instruction:\tIn the output, write 'appropriate' or 'inappropriate'.
407
+
408
+ Message:''' + f"\n{query}" + " Response:"
409
+ ```
410
+
411
+ Inference:
412
+
413
+ ```python
414
+ inputs = tokenizer(prompt, return_tensors="pt").to(device)
415
+ generate_ids = model.generate(
416
+ **inputs,
417
+ max_new_tokens=32,
418
+ temperature=0.0,
419
+ num_beams=2
420
+ )
421
+ response = tokenizer.decode(generate_ids[0],
422
+ skip_special_tokens=True,
423
+ clean_up_tokenization_spaces=True)
424
+ ```
425
+
426
+ Example output (after response processing):
427
+
428
+ ```json
429
+ The input message is inappropriate.
430
+ ```
431
+
432
+ ## Citation
433
+
434
+ To cite this model, please use:
435
+
436
+ ```
437
+ @online{MerlynEducationModels,
438
+ author = {Merlyn Mind AI Team},
439
+ title = {Merlyn Mind's education-domain language models},
440
+ year = {2023},
441
+ url = {https://www.merlyn.org/blog/merlyn-minds-education-specific-language-models},
442
+ urldate = {2023-06-26}
443
+ }
444
+ ```