TheBloke commited on
Commit
d74c2fc
1 Parent(s): aea3fef

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -52
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  inference: false
3
- license: other
4
  model_creator: Nick Perez
5
  model_link: https://huggingface.co/nkpz/llama2-22b-daydreamer-v2
6
  model_name: Llama2 22B Daydreamer v2
@@ -29,18 +29,24 @@ quantized_by: TheBloke
29
  - Model creator: [Nick Perez](https://huggingface.co/nkpz)
30
  - Original model: [Llama2 22B Daydreamer v2](https://huggingface.co/nkpz/llama2-22b-daydreamer-v2)
31
 
 
32
  ## Description
33
 
34
  This repo contains GPTQ model files for [Nick Perez's Llama2 22B Daydreamer v2](https://huggingface.co/nkpz/llama2-22b-daydreamer-v2).
35
 
36
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
37
 
 
 
38
  ## Repositories available
39
 
40
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GPTQ)
41
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GGML)
 
42
  * [Nick Perez's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/nkpz/llama2-22b-daydreamer-v2)
 
43
 
 
44
  ## Prompt template: Custom
45
 
46
  Q&A Example
@@ -50,33 +56,38 @@ Question: {prompt}
50
  Answer:
51
  ```
52
 
 
53
  An example of how it handles different roles, which I still like to use explicit instructions for:
54
 
55
  ```
56
  ### Instruction
57
  Complete the story in a manner that accurately reflects the scenario summary.
58
 
59
- ### Scenario:
60
  A hot dog salesman at a baseball game is annoyed and behaving rudely because I don't want to buy a hot dog.
61
 
62
  ### Begin Chat
63
  Hot Dog Salesman:
64
  ```
65
 
 
 
 
 
66
  ## Provided files and GPTQ parameters
67
 
68
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
69
 
70
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
71
 
72
- All GPTQ files are made with AutoGPTQ.
73
 
74
  <details>
75
  <summary>Explanation of GPTQ parameters</summary>
76
 
77
  - Bits: The bit size of the quantised model.
78
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
79
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
80
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
81
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
82
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -86,13 +97,16 @@ All GPTQ files are made with AutoGPTQ.
86
 
87
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
88
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
89
- | [main](https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 11.99 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
90
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.24 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
91
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 12.40 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
92
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 11.99 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
93
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 22.28 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
94
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 22.77 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
95
 
 
 
 
96
  ## How to download from branches
97
 
98
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/llama2-22B-daydreamer-v2-GPTQ:gptq-4bit-32g-actorder_True`
@@ -101,89 +115,88 @@ All GPTQ files are made with AutoGPTQ.
101
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GPTQ
102
  ```
103
  - In Python Transformers code, the branch is the `revision` parameter; see below.
104
-
 
105
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
106
 
107
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
108
 
109
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
110
 
111
  1. Click the **Model tab**.
112
  2. Under **Download custom model or LoRA**, enter `TheBloke/llama2-22B-daydreamer-v2-GPTQ`.
113
  - To download from a specific branch, enter for example `TheBloke/llama2-22B-daydreamer-v2-GPTQ:gptq-4bit-32g-actorder_True`
114
  - see Provided Files above for the list of branches for each option.
115
  3. Click **Download**.
116
- 4. The model will start downloading. Once it's finished it will say "Done"
117
  5. In the top left, click the refresh icon next to **Model**.
118
  6. In the **Model** dropdown, choose the model you just downloaded: `llama2-22B-daydreamer-v2-GPTQ`
119
  7. The model will automatically load, and is now ready for use!
120
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
121
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
122
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
123
 
 
124
  ## How to use this GPTQ model from Python code
125
 
126
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
127
 
128
- ```
129
- pip3 install auto-gptq
130
- ```
131
 
132
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
133
  ```
 
 
 
 
134
  pip3 uninstall -y auto-gptq
135
  git clone https://github.com/PanQiWei/AutoGPTQ
136
  cd AutoGPTQ
137
  pip3 install .
138
  ```
139
 
140
- Then try the following example code:
 
 
 
 
 
 
 
 
141
 
142
  ```python
143
- from transformers import AutoTokenizer, pipeline, logging
144
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
145
 
146
  model_name_or_path = "TheBloke/llama2-22B-daydreamer-v2-GPTQ"
147
-
148
- use_triton = False
 
 
 
 
149
 
150
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
151
 
152
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
153
- use_safetensors=True,
154
- trust_remote_code=False,
155
- device="cuda:0",
156
- use_triton=use_triton,
157
- quantize_config=None)
158
-
159
- """
160
- # To download from a specific branch, use the revision parameter, as in this example:
161
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
162
-
163
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
164
- revision="gptq-4bit-32g-actorder_True",
165
- use_safetensors=True,
166
- trust_remote_code=False,
167
- device="cuda:0",
168
- quantize_config=None)
169
- """
170
-
171
  prompt = "Tell me about AI"
172
  prompt_template=f'''Q&A Example
173
 
174
  ```
175
  Question: {prompt}
176
  Answer:
177
- ``
178
 
179
 
180
  An example of how it handles different roles, which I still like to use explicit instructions for:
181
 
182
- ````
183
  ### Instruction
184
  Complete the story in a manner that accurately reflects the scenario summary.
185
 
186
- ### Scenario:
187
  A hot dog salesman at a baseball game is annoyed and behaving rudely because I don't want to buy a hot dog.
188
 
189
  ### Begin Chat
@@ -200,9 +213,6 @@ print(tokenizer.decode(output[0]))
200
 
201
  # Inference can also be done using transformers' pipeline
202
 
203
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
204
- logging.set_verbosity(logging.CRITICAL)
205
-
206
  print("*** Pipeline:")
207
  pipe = pipeline(
208
  "text-generation",
@@ -216,12 +226,17 @@ pipe = pipeline(
216
 
217
  print(pipe(prompt_template)[0]['generated_text'])
218
  ```
 
219
 
 
220
  ## Compatibility
221
 
222
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
 
 
223
 
224
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
225
 
226
  <!-- footer start -->
227
  <!-- 200823 -->
@@ -246,7 +261,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
246
 
247
  **Special thanks to**: Aemon Algiz.
248
 
249
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
250
 
251
 
252
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
  inference: false
3
+ license: llama2
4
  model_creator: Nick Perez
5
  model_link: https://huggingface.co/nkpz/llama2-22b-daydreamer-v2
6
  model_name: Llama2 22B Daydreamer v2
 
29
  - Model creator: [Nick Perez](https://huggingface.co/nkpz)
30
  - Original model: [Llama2 22B Daydreamer v2](https://huggingface.co/nkpz/llama2-22b-daydreamer-v2)
31
 
32
+ <!-- description start -->
33
  ## Description
34
 
35
  This repo contains GPTQ model files for [Nick Perez's Llama2 22B Daydreamer v2](https://huggingface.co/nkpz/llama2-22b-daydreamer-v2).
36
 
37
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
38
 
39
+ <!-- description end -->
40
+ <!-- repositories-available start -->
41
  ## Repositories available
42
 
43
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GPTQ)
44
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GGUF)
45
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GGML)
46
  * [Nick Perez's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/nkpz/llama2-22b-daydreamer-v2)
47
+ <!-- repositories-available end -->
48
 
49
+ <!-- prompt-template start -->
50
  ## Prompt template: Custom
51
 
52
  Q&A Example
 
56
  Answer:
57
  ```
58
 
59
+
60
  An example of how it handles different roles, which I still like to use explicit instructions for:
61
 
62
  ```
63
  ### Instruction
64
  Complete the story in a manner that accurately reflects the scenario summary.
65
 
66
+ ### Scenario:
67
  A hot dog salesman at a baseball game is annoyed and behaving rudely because I don't want to buy a hot dog.
68
 
69
  ### Begin Chat
70
  Hot Dog Salesman:
71
  ```
72
 
73
+
74
+ <!-- prompt-template end -->
75
+
76
+ <!-- README_GPTQ.md-provided-files start -->
77
  ## Provided files and GPTQ parameters
78
 
79
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
80
 
81
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
82
 
83
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
84
 
85
  <details>
86
  <summary>Explanation of GPTQ parameters</summary>
87
 
88
  - Bits: The bit size of the quantised model.
89
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
90
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
91
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
92
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
93
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
97
 
98
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
99
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
100
+ | [main](https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 11.99 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
101
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.24 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
102
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 12.40 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
103
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 11.99 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
104
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 22.28 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
105
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 22.77 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
106
 
107
+ <!-- README_GPTQ.md-provided-files end -->
108
+
109
+ <!-- README_GPTQ.md-download-from-branches start -->
110
  ## How to download from branches
111
 
112
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/llama2-22B-daydreamer-v2-GPTQ:gptq-4bit-32g-actorder_True`
 
115
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/llama2-22B-daydreamer-v2-GPTQ
116
  ```
117
  - In Python Transformers code, the branch is the `revision` parameter; see below.
118
+ <!-- README_GPTQ.md-download-from-branches end -->
119
+ <!-- README_GPTQ.md-text-generation-webui start -->
120
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
121
 
122
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
123
 
124
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
125
 
126
  1. Click the **Model tab**.
127
  2. Under **Download custom model or LoRA**, enter `TheBloke/llama2-22B-daydreamer-v2-GPTQ`.
128
  - To download from a specific branch, enter for example `TheBloke/llama2-22B-daydreamer-v2-GPTQ:gptq-4bit-32g-actorder_True`
129
  - see Provided Files above for the list of branches for each option.
130
  3. Click **Download**.
131
+ 4. The model will start downloading. Once it's finished it will say "Done".
132
  5. In the top left, click the refresh icon next to **Model**.
133
  6. In the **Model** dropdown, choose the model you just downloaded: `llama2-22B-daydreamer-v2-GPTQ`
134
  7. The model will automatically load, and is now ready for use!
135
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
136
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
137
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
138
+ <!-- README_GPTQ.md-text-generation-webui end -->
139
 
140
+ <!-- README_GPTQ.md-use-from-python start -->
141
  ## How to use this GPTQ model from Python code
142
 
143
+ ### Install the necessary packages
144
 
145
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
146
 
147
+ ```shell
148
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
149
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
150
  ```
151
+
152
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
153
+
154
+ ```shell
155
  pip3 uninstall -y auto-gptq
156
  git clone https://github.com/PanQiWei/AutoGPTQ
157
  cd AutoGPTQ
158
  pip3 install .
159
  ```
160
 
161
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
162
+
163
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
164
+ ```shell
165
+ pip3 uninstall -y transformers
166
+ pip3 install git+https://github.com/huggingface/transformers.git
167
+ ```
168
+
169
+ ### You can then use the following code
170
 
171
  ```python
172
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
173
 
174
  model_name_or_path = "TheBloke/llama2-22B-daydreamer-v2-GPTQ"
175
+ # To use a different branch, change revision
176
+ # For example: revision="gptq-4bit-32g-actorder_True"
177
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
178
+ torch_dtype=torch.float16,
179
+ device_map="auto",
180
+ revision="main")
181
 
182
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
  prompt = "Tell me about AI"
185
  prompt_template=f'''Q&A Example
186
 
187
  ```
188
  Question: {prompt}
189
  Answer:
190
+ ```
191
 
192
 
193
  An example of how it handles different roles, which I still like to use explicit instructions for:
194
 
195
+ ```
196
  ### Instruction
197
  Complete the story in a manner that accurately reflects the scenario summary.
198
 
199
+ ### Scenario:
200
  A hot dog salesman at a baseball game is annoyed and behaving rudely because I don't want to buy a hot dog.
201
 
202
  ### Begin Chat
 
213
 
214
  # Inference can also be done using transformers' pipeline
215
 
 
 
 
216
  print("*** Pipeline:")
217
  pipe = pipeline(
218
  "text-generation",
 
226
 
227
  print(pipe(prompt_template)[0]['generated_text'])
228
  ```
229
+ <!-- README_GPTQ.md-use-from-python end -->
230
 
231
+ <!-- README_GPTQ.md-compatibility start -->
232
  ## Compatibility
233
 
234
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
235
+
236
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
237
 
238
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
239
+ <!-- README_GPTQ.md-compatibility end -->
240
 
241
  <!-- footer start -->
242
  <!-- 200823 -->
 
261
 
262
  **Special thanks to**: Aemon Algiz.
263
 
264
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
265
 
266
 
267
  Thank you to all my generous patrons and donaters!