TheBloke commited on
Commit
c0c6779
1 Parent(s): 5fda971

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +468 -0
README.md ADDED
@@ -0,0 +1,468 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: llmware/dragon-mistral-7b-v0
3
+ inference: false
4
+ license: apache-2.0
5
+ model_creator: llmware
6
+ model_name: Dragon Mistral 7B V0
7
+ model_type: mistral
8
+ prompt_template: '<human>: {prompt}
9
+
10
+ <bot>:
11
+
12
+ '
13
+ quantized_by: TheBloke
14
+ ---
15
+ <!-- markdownlint-disable MD041 -->
16
+
17
+ <!-- header start -->
18
+ <!-- 200823 -->
19
+ <div style="width: auto; margin-left: auto; margin-right: auto">
20
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
21
+ </div>
22
+ <div style="display: flex; justify-content: space-between; width: 100%;">
23
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
24
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
25
+ </div>
26
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
27
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
28
+ </div>
29
+ </div>
30
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
31
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
32
+ <!-- header end -->
33
+
34
+ # Dragon Mistral 7B V0 - GPTQ
35
+ - Model creator: [llmware](https://huggingface.co/llmware)
36
+ - Original model: [Dragon Mistral 7B V0](https://huggingface.co/llmware/dragon-mistral-7b-v0)
37
+
38
+ <!-- description start -->
39
+ # Description
40
+
41
+ This repo contains GPTQ model files for [llmware's Dragon Mistral 7B V0](https://huggingface.co/llmware/dragon-mistral-7b-v0).
42
+
43
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
44
+
45
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
46
+
47
+ <!-- description end -->
48
+ <!-- repositories-available start -->
49
+ ## Repositories available
50
+
51
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/dragon-mistral-7B-v0-AWQ)
52
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/dragon-mistral-7B-v0-GPTQ)
53
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/dragon-mistral-7B-v0-GGUF)
54
+ * [llmware's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/llmware/dragon-mistral-7b-v0)
55
+ <!-- repositories-available end -->
56
+
57
+ <!-- prompt-template start -->
58
+ ## Prompt template: human-bot
59
+
60
+ ```
61
+ <human>: {prompt}
62
+ <bot>:
63
+
64
+ ```
65
+
66
+ <!-- prompt-template end -->
67
+
68
+
69
+
70
+ <!-- README_GPTQ.md-compatible clients start -->
71
+ ## Known compatible clients / servers
72
+
73
+ GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
74
+
75
+ These GPTQ models are known to work in the following inference servers/webuis.
76
+
77
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
78
+ - [KoboldAI United](https://github.com/henk717/koboldai)
79
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
80
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
81
+
82
+ This may not be a complete list; if you know of others, please let me know!
83
+ <!-- README_GPTQ.md-compatible clients end -->
84
+
85
+ <!-- README_GPTQ.md-provided-files start -->
86
+ ## Provided files, and GPTQ parameters
87
+
88
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
89
+
90
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
91
+
92
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
93
+
94
+ <details>
95
+ <summary>Explanation of GPTQ parameters</summary>
96
+
97
+ - Bits: The bit size of the quantised model.
98
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
99
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
100
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
101
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
102
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
103
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
104
+
105
+ </details>
106
+
107
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
108
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
109
+ | [main](https://huggingface.co/TheBloke/dragon-mistral-7B-v0-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.16 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
110
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/dragon-mistral-7B-v0-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.57 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
111
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/dragon-mistral-7B-v0-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.52 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
112
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/dragon-mistral-7B-v0-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.68 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
113
+ | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/dragon-mistral-7B-v0-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 8.17 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
114
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/dragon-mistral-7B-v0-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.29 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
115
+
116
+ <!-- README_GPTQ.md-provided-files end -->
117
+
118
+ <!-- README_GPTQ.md-download-from-branches start -->
119
+ ## How to download, including from branches
120
+
121
+ ### In text-generation-webui
122
+
123
+ To download from the `main` branch, enter `TheBloke/dragon-mistral-7B-v0-GPTQ` in the "Download model" box.
124
+
125
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/dragon-mistral-7B-v0-GPTQ:gptq-4bit-32g-actorder_True`
126
+
127
+ ### From the command line
128
+
129
+ I recommend using the `huggingface-hub` Python library:
130
+
131
+ ```shell
132
+ pip3 install huggingface-hub
133
+ ```
134
+
135
+ To download the `main` branch to a folder called `dragon-mistral-7B-v0-GPTQ`:
136
+
137
+ ```shell
138
+ mkdir dragon-mistral-7B-v0-GPTQ
139
+ huggingface-cli download TheBloke/dragon-mistral-7B-v0-GPTQ --local-dir dragon-mistral-7B-v0-GPTQ --local-dir-use-symlinks False
140
+ ```
141
+
142
+ To download from a different branch, add the `--revision` parameter:
143
+
144
+ ```shell
145
+ mkdir dragon-mistral-7B-v0-GPTQ
146
+ huggingface-cli download TheBloke/dragon-mistral-7B-v0-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir dragon-mistral-7B-v0-GPTQ --local-dir-use-symlinks False
147
+ ```
148
+
149
+ <details>
150
+ <summary>More advanced huggingface-cli download usage</summary>
151
+
152
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
153
+
154
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
155
+
156
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
157
+
158
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
159
+
160
+ ```shell
161
+ pip3 install hf_transfer
162
+ ```
163
+
164
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
165
+
166
+ ```shell
167
+ mkdir dragon-mistral-7B-v0-GPTQ
168
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/dragon-mistral-7B-v0-GPTQ --local-dir dragon-mistral-7B-v0-GPTQ --local-dir-use-symlinks False
169
+ ```
170
+
171
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
172
+ </details>
173
+
174
+ ### With `git` (**not** recommended)
175
+
176
+ To clone a specific branch with `git`, use a command like this:
177
+
178
+ ```shell
179
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/dragon-mistral-7B-v0-GPTQ
180
+ ```
181
+
182
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
183
+
184
+ <!-- README_GPTQ.md-download-from-branches end -->
185
+ <!-- README_GPTQ.md-text-generation-webui start -->
186
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
187
+
188
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
189
+
190
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
191
+
192
+ 1. Click the **Model tab**.
193
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/dragon-mistral-7B-v0-GPTQ`.
194
+
195
+ - To download from a specific branch, enter for example `TheBloke/dragon-mistral-7B-v0-GPTQ:gptq-4bit-32g-actorder_True`
196
+ - see Provided Files above for the list of branches for each option.
197
+
198
+ 3. Click **Download**.
199
+ 4. The model will start downloading. Once it's finished it will say "Done".
200
+ 5. In the top left, click the refresh icon next to **Model**.
201
+ 6. In the **Model** dropdown, choose the model you just downloaded: `dragon-mistral-7B-v0-GPTQ`
202
+ 7. The model will automatically load, and is now ready for use!
203
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
204
+
205
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
206
+
207
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
208
+
209
+ <!-- README_GPTQ.md-text-generation-webui end -->
210
+
211
+ <!-- README_GPTQ.md-use-from-tgi start -->
212
+ ## Serving this model from Text Generation Inference (TGI)
213
+
214
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
215
+
216
+ Example Docker parameters:
217
+
218
+ ```shell
219
+ --model-id TheBloke/dragon-mistral-7B-v0-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
220
+ ```
221
+
222
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
223
+
224
+ ```shell
225
+ pip3 install huggingface-hub
226
+ ```
227
+
228
+ ```python
229
+ from huggingface_hub import InferenceClient
230
+
231
+ endpoint_url = "https://your-endpoint-url-here"
232
+
233
+ prompt = "Tell me about AI"
234
+ prompt_template=f'''<human>: {prompt}
235
+ <bot>:
236
+ '''
237
+
238
+ client = InferenceClient(endpoint_url)
239
+ response = client.text_generation(prompt,
240
+ max_new_tokens=128,
241
+ do_sample=True,
242
+ temperature=0.7,
243
+ top_p=0.95,
244
+ top_k=40,
245
+ repetition_penalty=1.1)
246
+
247
+ print(f"Model output: {response}")
248
+ ```
249
+ <!-- README_GPTQ.md-use-from-tgi end -->
250
+ <!-- README_GPTQ.md-use-from-python start -->
251
+ ## Python code example: inference from this GPTQ model
252
+
253
+ ### Install the necessary packages
254
+
255
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
256
+
257
+ ```shell
258
+ pip3 install --upgrade transformers optimum
259
+ # If using PyTorch 2.1 + CUDA 12.x:
260
+ pip3 install --upgrade auto-gptq
261
+ # or, if using PyTorch 2.1 + CUDA 11.x:
262
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
263
+ ```
264
+
265
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
266
+
267
+ ```shell
268
+ pip3 uninstall -y auto-gptq
269
+ git clone https://github.com/PanQiWei/AutoGPTQ
270
+ cd AutoGPTQ
271
+ git checkout v0.5.1
272
+ pip3 install .
273
+ ```
274
+
275
+ ### Example Python code
276
+
277
+ ```python
278
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
279
+
280
+ model_name_or_path = "TheBloke/dragon-mistral-7B-v0-GPTQ"
281
+ # To use a different branch, change revision
282
+ # For example: revision="gptq-4bit-32g-actorder_True"
283
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
284
+ device_map="auto",
285
+ trust_remote_code=False,
286
+ revision="main")
287
+
288
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
289
+
290
+ prompt = "Write a story about llamas"
291
+ system_message = "You are a story writing assistant"
292
+ prompt_template=f'''<human>: {prompt}
293
+ <bot>:
294
+ '''
295
+
296
+ print("\n\n*** Generate:")
297
+
298
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
299
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
300
+ print(tokenizer.decode(output[0]))
301
+
302
+ # Inference can also be done using transformers' pipeline
303
+
304
+ print("*** Pipeline:")
305
+ pipe = pipeline(
306
+ "text-generation",
307
+ model=model,
308
+ tokenizer=tokenizer,
309
+ max_new_tokens=512,
310
+ do_sample=True,
311
+ temperature=0.7,
312
+ top_p=0.95,
313
+ top_k=40,
314
+ repetition_penalty=1.1
315
+ )
316
+
317
+ print(pipe(prompt_template)[0]['generated_text'])
318
+ ```
319
+ <!-- README_GPTQ.md-use-from-python end -->
320
+
321
+ <!-- README_GPTQ.md-compatibility start -->
322
+ ## Compatibility
323
+
324
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
325
+
326
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility.
327
+
328
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
329
+ <!-- README_GPTQ.md-compatibility end -->
330
+
331
+ <!-- footer start -->
332
+ <!-- 200823 -->
333
+ ## Discord
334
+
335
+ For further support, and discussions on these models and AI in general, join us at:
336
+
337
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
338
+
339
+ ## Thanks, and how to contribute
340
+
341
+ Thanks to the [chirper.ai](https://chirper.ai) team!
342
+
343
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
344
+
345
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
346
+
347
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
348
+
349
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
350
+
351
+ * Patreon: https://patreon.com/TheBlokeAI
352
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
353
+
354
+ **Special thanks to**: Aemon Algiz.
355
+
356
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
357
+
358
+
359
+ Thank you to all my generous patrons and donaters!
360
+
361
+ And thank you again to a16z for their generous grant.
362
+
363
+ <!-- footer end -->
364
+
365
+ # Original model card: llmware's Dragon Mistral 7B V0
366
+
367
+
368
+ # Model Card for Model ID
369
+
370
+ <!-- Provide a quick summary of what the model is/does. -->
371
+
372
+ dragon-mistral-7b-v0 part of the dRAGon ("Delivering RAG On ...") model series, RAG-instruct trained on top of a Mistral-7B base model.
373
+
374
+ DRAGON models have been fine-tuned with the specific objective of fact-based question-answering over complex business and legal documents with an emphasis on reducing hallucinations and providing short, clear answers for workflow automation.
375
+
376
+ ### Benchmark Tests
377
+
378
+ Evaluated against the benchmark test: [RAG-Instruct-Benchmark-Tester](https://www.huggingface.co/datasets/llmware/rag_instruct_benchmark_tester)
379
+ Average of 2 Test Runs with 1 point for correct answer, 0.5 point for partial correct or blank / NF, 0.0 points for incorrect, and -1 points for hallucinations.
380
+
381
+ --**Accuracy Score**: **96.50** correct out of 100
382
+ --Not Found Classification: 92.50%
383
+ --Boolean: 97.50%
384
+ --Math/Logic: 81.25%
385
+ --Complex Questions (1-5): 4 (Medium-High - table-reading, multiple-choice, causal)
386
+ --Summarization Quality (1-5): 4 (Coherent, extractive)
387
+ --Hallucinations: No hallucinations observed in test runs.
388
+
389
+ For test run results (and good indicator of target use cases), please see the files ("core_rag_test" and "answer_sheet" in this repo).
390
+
391
+ ### Model Description
392
+
393
+ <!-- Provide a longer summary of what this model is. -->
394
+
395
+ - **Developed by:** llmware
396
+ - **Model type:** Mistral-7B
397
+ - **Language(s) (NLP):** English
398
+ - **License:** Apache 2.0
399
+ - **Finetuned from model:** Mistral-7B-Base
400
+
401
+ ### Direct Use
402
+
403
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
404
+
405
+ DRAGON is designed for enterprise automation use cases, especially in knowledge-intensive industries, such as financial services,
406
+ legal and regulatory industries with complex information sources.
407
+
408
+ DRAGON models have been trained for common RAG scenarios, specifically: question-answering, key-value extraction, and basic summarization as the core instruction types
409
+ without the need for a lot of complex instruction verbiage - provide a text passage context, ask questions, and get clear fact-based responses.
410
+
411
+
412
+ ## Bias, Risks, and Limitations
413
+
414
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
415
+
416
+ Any model can provide inaccurate or incomplete information, and should be used in conjunction with appropriate safeguards and fact-checking mechanisms.
417
+
418
+
419
+ ## How to Get Started with the Model
420
+
421
+ The fastest way to get started with dRAGon is through direct import in transformers:
422
+
423
+ from transformers import AutoTokenizer, AutoModelForCausalLM
424
+ tokenizer = AutoTokenizer.from_pretrained("dragon-mistral-7b-v0")
425
+ model = AutoModelForCausalLM.from_pretrained("dragon-mistral-7b-v0")
426
+
427
+ Please refer to the generation_test .py files in the Files repository, which includes 200 samples and script to test the model. The **generation_test_llmware_script.py** includes built-in llmware capabilities for fact-checking, as well as easy integration with document parsing and actual retrieval to swap out the test set for RAG workflow consisting of business documents.
428
+
429
+ The dRAGon model was fine-tuned with a simple "\<human> and \<bot> wrapper", so to get the best results, wrap inference entries as:
430
+
431
+ full_prompt = "<human>: " + my_prompt + "\n" + "<bot>:"
432
+
433
+ The BLING model was fine-tuned with closed-context samples, which assume generally that the prompt consists of two sub-parts:
434
+
435
+ 1. Text Passage Context, and
436
+ 2. Specific question or instruction based on the text passage
437
+
438
+ To get the best results, package "my_prompt" as follows:
439
+
440
+ my_prompt = {{text_passage}} + "\n" + {{question/instruction}}
441
+
442
+
443
+ If you are using a HuggingFace generation script:
444
+
445
+ # prepare prompt packaging used in fine-tuning process
446
+ new_prompt = "<human>: " + entries["context"] + "\n" + entries["query"] + "\n" + "<bot>:"
447
+
448
+ inputs = tokenizer(new_prompt, return_tensors="pt")
449
+ start_of_output = len(inputs.input_ids[0])
450
+
451
+ # temperature: set at 0.3 for consistency of output
452
+ # max_new_tokens: set at 100 - may prematurely stop a few of the summaries
453
+
454
+ outputs = model.generate(
455
+ inputs.input_ids.to(device),
456
+ eos_token_id=tokenizer.eos_token_id,
457
+ pad_token_id=tokenizer.eos_token_id,
458
+ do_sample=True,
459
+ temperature=0.3,
460
+ max_new_tokens=100,
461
+ )
462
+
463
+ output_only = tokenizer.decode(outputs[0][start_of_output:],skip_special_tokens=True)
464
+
465
+
466
+ ## Model Card Contact
467
+
468
+ Darren Oberst & llmware team