File size: 25,278 Bytes
1c657a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
---
base_model: 01-ai/Yi-6B
inference: false
license: other
license_link: LICENSE
license_name: yi-license
model_creator: 01-ai
model_name: Yi 6B
model_type: yi
pipeline_tag: text-generation
prompt_template: '{prompt}

  '
quantized_by: TheBloke
widget:
- output:
    text: " an eerie sense that something is just not right\u2026\nBetween the two\
      \ worlds lies The Forgotten Kingdom - home to creatures long since thought extinct\
      \ and ancient magic so strong it defies belief! Only here can you find what\
      \ has been lost for centuries: An Elixir Of Life which will restore youth and\
      \ vitality if only those who seek its power are brave enough to face up against\
      \ all manner of dangers lurking in this mysterious land! But beware; some say\
      \ there may even exist powerful entities beyond our comprehension whose intentions\
      \ towards humanity remain unclear at best ---- they might want nothing more\
      \ than destruction itself rather then anything else from their quest after immortality\
      \ (and maybe someone should tell them about modern medicine)? In any event though\
      \ \u2013 one thing remains true regardless : whether or not success comes easy\
      \ depends entirely upon how much effort we put into conquering whatever challenges\
      \ lie ahead along with having faith deep down inside ourselves too ;) So let\u2019\
      s get started now shall We?"
  text: There's a place where time stands still. A place of breath taking wonder,
    but also
---
<!-- markdownlint-disable MD041 -->

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# Yi 6B - GPTQ
- Model creator: [01-ai](https://huggingface.co/01-ai)
- Original model: [Yi 6B](https://huggingface.co/01-ai/Yi-6B)

<!-- description start -->
## Description

This repo contains GPTQ model files for [01-ai's Yi 6B](https://huggingface.co/01-ai/Yi-6B).

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).

<!-- description end -->
<!-- repositories-available start -->
## Repositories available

* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Yi-6B-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Yi-6B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Yi-6B-GGUF)
* [01-ai's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/01-ai/Yi-6B)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: None

```
{prompt}

```

<!-- prompt-template end -->



<!-- README_GPTQ.md-compatible clients start -->
## Known compatible clients / servers

These GPTQ models are known to work in the following inference servers/webuis.

- [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
- [KoboldAI United](https://github.com/henk717/koboldai)
- [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)

This may not be a complete list; if you know of others, please let me know!
<!-- README_GPTQ.md-compatible clients end -->

<!-- README_GPTQ.md-provided-files start -->
## Provided files, and GPTQ parameters

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch.  See below for instructions on fetching from different branches.

Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.

<details>
  <summary>Explanation of GPTQ parameters</summary>

- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
- Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.

</details>

| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
| [main](https://huggingface.co/TheBloke/Yi-6B-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 4096 | 3.93 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | 
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Yi-6B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 4096 | 4.26 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | 
| [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Yi-6B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 4096 | 4.99 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | 
| [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Yi-6B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 4096 | 5.00 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | 
| [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/Yi-6B-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 4096 | 4.97 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. | 
| [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Yi-6B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 4096 | 4.04 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |

<!-- README_GPTQ.md-provided-files end -->

<!-- README_GPTQ.md-download-from-branches start -->
## How to download, including from branches

### In text-generation-webui

To download from the `main` branch, enter `TheBloke/Yi-6B-GPTQ` in the "Download model" box.

To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/Yi-6B-GPTQ:gptq-4bit-32g-actorder_True`

### From the command line

I recommend using the `huggingface-hub` Python library:

```shell
pip3 install huggingface-hub
```

To download the `main` branch to a folder called `Yi-6B-GPTQ`:

```shell
mkdir Yi-6B-GPTQ
huggingface-cli download TheBloke/Yi-6B-GPTQ --local-dir Yi-6B-GPTQ --local-dir-use-symlinks False
```

To download from a different branch, add the `--revision` parameter:

```shell
mkdir Yi-6B-GPTQ
huggingface-cli download TheBloke/Yi-6B-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir Yi-6B-GPTQ --local-dir-use-symlinks False
```

<details>
  <summary>More advanced huggingface-cli download usage</summary>

If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.

The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.

For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).

To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:

```shell
pip3 install hf_transfer
```

And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:

```shell
mkdir Yi-6B-GPTQ
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Yi-6B-GPTQ --local-dir Yi-6B-GPTQ --local-dir-use-symlinks False
```

Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>

### With `git` (**not** recommended)

To clone a specific branch with `git`, use a command like this:

```shell
git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Yi-6B-GPTQ
```

Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)

<!-- README_GPTQ.md-download-from-branches end -->
<!-- README_GPTQ.md-text-generation-webui start -->
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)

Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/Yi-6B-GPTQ`.

    - To download from a specific branch, enter for example `TheBloke/Yi-6B-GPTQ:gptq-4bit-32g-actorder_True`
    - see Provided Files above for the list of branches for each option.

3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done".
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `Yi-6B-GPTQ`
7. The model will automatically load, and is now ready for use!
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.

    - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.

9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!

<!-- README_GPTQ.md-text-generation-webui end -->

<!-- README_GPTQ.md-use-from-tgi start -->
## Serving this model from Text Generation Inference (TGI)

It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`

Example Docker parameters:

```shell
--model-id TheBloke/Yi-6B-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
```

Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):

```shell
pip3 install huggingface-hub
```

```python
from huggingface_hub import InferenceClient

endpoint_url = "https://your-endpoint-url-here"

prompt = "Tell me about AI"
prompt_template=f'''{prompt}
'''

client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
                                  max_new_tokens=128,
                                  do_sample=True,
                                  temperature=0.7,
                                  top_p=0.95,
                                  top_k=40,
                                  repetition_penalty=1.1)

print(f"Model output: {response}")
```
<!-- README_GPTQ.md-use-from-tgi end -->
<!-- README_GPTQ.md-use-from-python start -->
## How to use this GPTQ model from Python code

### Install the necessary packages

Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.

```shell
pip3 install transformers optimum
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/  # Use cu117 if on CUDA 11.7
```

If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:

```shell
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
git checkout v0.4.2
pip3 install .
```

### You can then use the following code

```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_name_or_path = "TheBloke/Yi-6B-GPTQ"
# To use a different branch, change revision
# For example: revision="gptq-4bit-32g-actorder_True"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             trust_remote_code=True,
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

prompt = "Tell me about AI"
prompt_template=f'''{prompt}
'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])
```
<!-- README_GPTQ.md-use-from-python end -->

<!-- README_GPTQ.md-compatibility start -->
## Compatibility

The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.

[ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.

For a list of clients/servers, please see "Known compatible clients / servers", above.
<!-- README_GPTQ.md-compatibility end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

# Original model card: 01-ai's Yi 6B

<div align="center">

<img src="./Yi.svg" width="200px">

</div>

## Introduction

The **Yi** series models are large language models trained from scratch by
developers at [01.AI](https://01.ai/). The first public release contains two
bilingual(English/Chinese) base models with the parameter sizes of 6B([`Yi-6B`](https://huggingface.co/01-ai/Yi-6B)) 
and 34B([`Yi-34B`](https://huggingface.co/01-ai/Yi-34B)). Both of them are trained 
with 4K sequence length and can be extended to 32K during inference time. 
The [`Yi-6B-200K`](https://huggingface.co/01-ai/Yi-6B-200K)
and [`Yi-34B-200K`](https://huggingface.co/01-ai/Yi-34B-200K) are base model with
200K context length.

## News

- 🎯 **2023/11/06**: The base model of [`Yi-6B-200K`](https://huggingface.co/01-ai/Yi-6B-200K) 
and [`Yi-34B-200K`](https://huggingface.co/01-ai/Yi-34B-200K) with 200K context length.
- 🎯 **2023/11/02**: The base model of [`Yi-6B`](https://huggingface.co/01-ai/Yi-6B) and 
[`Yi-34B`](https://huggingface.co/01-ai/Yi-34B).


## Model Performance

| Model         |   MMLU   |  CMMLU   |  C-Eval  |  GAOKAO  |   BBH    | Common-sense Reasoning | Reading Comprehension | Math & Code |
| :------------ | :------: | :------: | :------: | :------: | :------: | :--------------------: | :-------------------: | :---------: |
|               |  5-shot  |  5-shot  |  5-shot  |  0-shot  | 3-shot@1 |           -            |           -           |      -      |
| LLaMA2-34B    |   62.6   |    -     |    -     |    -     |   44.1   |          69.9          |         68.0          |    26.0     |
| LLaMA2-70B    |   68.9   |   53.3   |    -     |   49.8   |   51.2   |          71.9          |         69.4          |    36.8     |
| Baichuan2-13B |   59.2   |   62.0   |   58.1   |   54.3   |   48.8   |          64.3          |         62.4          |    23.0     |
| Qwen-14B      |   66.3   |   71.0   |   72.1   |   62.5   |   53.4   |          73.3          |         72.5          |  **39.8**   |
| Skywork-13B   |   62.1   |   61.8   |   60.6   |   68.1   |   41.7   |          72.4          |         61.4          |    24.9     |
| InternLM-20B  |   62.1   |   59.0   |   58.8   |   45.5   |   52.5   |          78.3          |           -           |    30.4     |
| Aquila-34B    |   67.8   |   71.4   |   63.1   |    -     |    -     |           -            |           -           |      -      |
| Falcon-180B   |   70.4   |   58.0   |   57.8   |   59.0   |   54.0   |          77.3          |         68.8          |    34.0     |
| Yi-6B         |   63.2   |   75.5   |   72.0   |   72.2   |   42.8   |          72.3          |         68.7          |    19.8     |
| Yi-6B-200K    |   64.0   |   75.3   |   73.5   |   73.9   |   42.0   |          72.0          |         69.1          |    19.0     |
| **Yi-34B**    | **76.3** | **83.7** |   81.4   |   82.8   | **54.3** |        **80.1**        |         76.4          |    37.1     |
| Yi-34B-200K   |   76.1   |   83.6   | **81.9** | **83.4** |   52.7   |          79.7          |       **76.6**        |    36.3     |

While benchmarking open-source models, we have observed a disparity between the
results generated by our pipeline and those reported in public sources (e.g.
OpenCompass). Upon conducting a more in-depth investigation of this difference,
we have discovered that various models may employ different prompts,
post-processing strategies, and sampling techniques, potentially resulting in
significant variations in the outcomes. Our prompt and post-processing strategy
remains consistent with the original benchmark, and greedy decoding is employed
during evaluation without any post-processing for the generated content. For
scores that were not reported by the original authors (including scores reported
with different settings), we try to get results with our pipeline.

To evaluate the model's capability extensively, we adopted the methodology
outlined in Llama2. Specifically, we included PIQA, SIQA, HellaSwag, WinoGrande,
ARC, OBQA, and CSQA to assess common sense reasoning. SquAD, QuAC, and BoolQ
were incorporated to evaluate reading comprehension. CSQA was exclusively tested
using a 7-shot setup, while all other tests were conducted with a 0-shot
configuration. Additionally, we introduced GSM8K (8-shot@1), MATH (4-shot@1),
HumanEval (0-shot@1), and MBPP (3-shot@1) under the category "Math & Code". Due
to technical constraints, we did not test Falcon-180 on QuAC and OBQA; the score
is derived by averaging the scores on the remaining tasks. Since the scores for
these two tasks are generally lower than the average, we believe that
Falcon-180B's performance was not underestimated.

## Usage

Please visit our [github repository](https://github.com/01-ai/Yi) for general
guidance on how to use this model.

## Disclaimer

Although we use data compliance checking algorithms during the training process
to ensure the compliance of the trained model to the best of our ability, due to
the complexity of the data and the diversity of language model usage scenarios,
we cannot guarantee that the model will generate correct and reasonable output
in all scenarios. Please be aware that there is still a risk of the model
producing problematic outputs. We will not be responsible for any risks and
issues resulting from misuse, misguidance, illegal usage, and related
misinformation, as well as any associated data security concerns.

## License

The Yi series models are fully open for academic research and free commercial
usage with permission via applications. All usage must adhere to the [Model
License Agreement 2.0](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE). To
apply for the official commercial license, please contact us
([[email protected]](mailto:[email protected])).