TheBloke commited on
Commit
203c065
1 Parent(s): 4d8da4f

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +421 -0
README.md ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: NousResearch/Yarn-Llama-2-70b-32k
3
+ datasets:
4
+ - emozilla/yarn-train-tokenized-8k-llama
5
+ inference: false
6
+ language:
7
+ - en
8
+ library_name: transformers
9
+ license: apache-2.0
10
+ metrics:
11
+ - perplexity
12
+ model_creator: NousResearch
13
+ model_name: Yarn Llama 2 70B 32K
14
+ model_type: llama
15
+ prompt_template: '{prompt}
16
+
17
+ '
18
+ quantized_by: TheBloke
19
+ ---
20
+ <!-- markdownlint-disable MD041 -->
21
+
22
+ <!-- header start -->
23
+ <!-- 200823 -->
24
+ <div style="width: auto; margin-left: auto; margin-right: auto">
25
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
26
+ </div>
27
+ <div style="display: flex; justify-content: space-between; width: 100%;">
28
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
29
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
30
+ </div>
31
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
32
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
33
+ </div>
34
+ </div>
35
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
36
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
37
+ <!-- header end -->
38
+
39
+ # Yarn Llama 2 70B 32K - GPTQ
40
+ - Model creator: [NousResearch](https://huggingface.co/NousResearch)
41
+ - Original model: [Yarn Llama 2 70B 32K](https://huggingface.co/NousResearch/Yarn-Llama-2-70b-32k)
42
+
43
+ <!-- description start -->
44
+ # Description
45
+
46
+ This repo contains GPTQ model files for [NousResearch's Yarn Llama 2 70B 32K](https://huggingface.co/NousResearch/Yarn-Llama-2-70b-32k).
47
+
48
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
49
+
50
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
51
+
52
+ <!-- description end -->
53
+ <!-- repositories-available start -->
54
+ ## Repositories available
55
+
56
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Yarn-Llama-2-70B-32k-AWQ)
57
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Yarn-Llama-2-70B-32k-GPTQ)
58
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Yarn-Llama-2-70B-32k-GGUF)
59
+ * [NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Yarn-Llama-2-70b-32k)
60
+ <!-- repositories-available end -->
61
+
62
+ <!-- prompt-template start -->
63
+ ## Prompt template: None
64
+
65
+ ```
66
+ {prompt}
67
+
68
+ ```
69
+
70
+ <!-- prompt-template end -->
71
+ <!-- licensing start -->
72
+ ## Licensing
73
+
74
+ The creator of the source model has listed its license as `apache-2.0`, and this quantization has therefore used that same license.
75
+
76
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
77
+
78
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [NousResearch's Yarn Llama 2 70B 32K](https://huggingface.co/NousResearch/Yarn-Llama-2-70b-32k).
79
+ <!-- licensing end -->
80
+
81
+ <!-- README_GPTQ.md-compatible clients start -->
82
+ ## Known compatible clients / servers
83
+
84
+ These GPTQ models are known to work in the following inference servers/webuis.
85
+
86
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
87
+ - [KoboldAI United](https://github.com/henk717/koboldai)
88
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
89
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
90
+
91
+ This may not be a complete list; if you know of others, please let me know!
92
+ <!-- README_GPTQ.md-compatible clients end -->
93
+
94
+ <!-- README_GPTQ.md-provided-files start -->
95
+ ## Provided files, and GPTQ parameters
96
+
97
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
98
+
99
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
100
+
101
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
102
+
103
+ <details>
104
+ <summary>Explanation of GPTQ parameters</summary>
105
+
106
+ - Bits: The bit size of the quantised model.
107
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
108
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
109
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
110
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
111
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
112
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
113
+
114
+ </details>
115
+
116
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
117
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
118
+ | [main](https://huggingface.co/TheBloke/Yarn-Llama-2-70B-32k-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [c4](https://huggingface.co/datasets/allenai/c4/viewer/allenai--c4) | 16384 | 35.33 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
119
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Yarn-Llama-2-70B-32k-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [c4](https://huggingface.co/datasets/allenai/c4/viewer/allenai--c4) | 16384 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
120
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Yarn-Llama-2-70B-32k-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [c4](https://huggingface.co/datasets/allenai/c4/viewer/allenai--c4) | 16384 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
121
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Yarn-Llama-2-70B-32k-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | 32 | Yes | 0.1 | [c4](https://huggingface.co/datasets/allenai/c4/viewer/allenai--c4) | 16384 | 31.84 GB | No | 3-bit, with group size 64g and act-order. Highest quality 3-bit option. |
122
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Yarn-Llama-2-70B-32k-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [c4](https://huggingface.co/datasets/allenai/c4/viewer/allenai--c4) | 16384 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
123
+
124
+ <!-- README_GPTQ.md-provided-files end -->
125
+
126
+ <!-- README_GPTQ.md-download-from-branches start -->
127
+ ## How to download, including from branches
128
+
129
+ ### In text-generation-webui
130
+
131
+ To download from the `main` branch, enter `TheBloke/Yarn-Llama-2-70B-32k-GPTQ` in the "Download model" box.
132
+
133
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/Yarn-Llama-2-70B-32k-GPTQ:gptq-4bit-128g-actorder_True`
134
+
135
+ ### From the command line
136
+
137
+ I recommend using the `huggingface-hub` Python library:
138
+
139
+ ```shell
140
+ pip3 install huggingface-hub
141
+ ```
142
+
143
+ To download the `main` branch to a folder called `Yarn-Llama-2-70B-32k-GPTQ`:
144
+
145
+ ```shell
146
+ mkdir Yarn-Llama-2-70B-32k-GPTQ
147
+ huggingface-cli download TheBloke/Yarn-Llama-2-70B-32k-GPTQ --local-dir Yarn-Llama-2-70B-32k-GPTQ --local-dir-use-symlinks False
148
+ ```
149
+
150
+ To download from a different branch, add the `--revision` parameter:
151
+
152
+ ```shell
153
+ mkdir Yarn-Llama-2-70B-32k-GPTQ
154
+ huggingface-cli download TheBloke/Yarn-Llama-2-70B-32k-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir Yarn-Llama-2-70B-32k-GPTQ --local-dir-use-symlinks False
155
+ ```
156
+
157
+ <details>
158
+ <summary>More advanced huggingface-cli download usage</summary>
159
+
160
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
161
+
162
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
163
+
164
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
165
+
166
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
167
+
168
+ ```shell
169
+ pip3 install hf_transfer
170
+ ```
171
+
172
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
173
+
174
+ ```shell
175
+ mkdir Yarn-Llama-2-70B-32k-GPTQ
176
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Yarn-Llama-2-70B-32k-GPTQ --local-dir Yarn-Llama-2-70B-32k-GPTQ --local-dir-use-symlinks False
177
+ ```
178
+
179
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
180
+ </details>
181
+
182
+ ### With `git` (**not** recommended)
183
+
184
+ To clone a specific branch with `git`, use a command like this:
185
+
186
+ ```shell
187
+ git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/Yarn-Llama-2-70B-32k-GPTQ
188
+ ```
189
+
190
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
191
+
192
+ <!-- README_GPTQ.md-download-from-branches end -->
193
+ <!-- README_GPTQ.md-text-generation-webui start -->
194
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
195
+
196
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
197
+
198
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
199
+
200
+ 1. Click the **Model tab**.
201
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Yarn-Llama-2-70B-32k-GPTQ`.
202
+
203
+ - To download from a specific branch, enter for example `TheBloke/Yarn-Llama-2-70B-32k-GPTQ:gptq-4bit-128g-actorder_True`
204
+ - see Provided Files above for the list of branches for each option.
205
+
206
+ 3. Click **Download**.
207
+ 4. The model will start downloading. Once it's finished it will say "Done".
208
+ 5. In the top left, click the refresh icon next to **Model**.
209
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Yarn-Llama-2-70B-32k-GPTQ`
210
+ 7. The model will automatically load, and is now ready for use!
211
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
212
+
213
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
214
+
215
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
216
+
217
+ <!-- README_GPTQ.md-text-generation-webui end -->
218
+
219
+ <!-- README_GPTQ.md-use-from-tgi start -->
220
+ ## Serving this model from Text Generation Inference (TGI)
221
+
222
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
223
+
224
+ Example Docker parameters:
225
+
226
+ ```shell
227
+ --model-id TheBloke/Yarn-Llama-2-70B-32k-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
228
+ ```
229
+
230
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
231
+
232
+ ```shell
233
+ pip3 install huggingface-hub
234
+ ```
235
+
236
+ ```python
237
+ from huggingface_hub import InferenceClient
238
+
239
+ endpoint_url = "https://your-endpoint-url-here"
240
+
241
+ prompt = "Tell me about AI"
242
+ prompt_template=f'''{prompt}
243
+ '''
244
+
245
+ client = InferenceClient(endpoint_url)
246
+ response = client.text_generation(prompt,
247
+ max_new_tokens=128,
248
+ do_sample=True,
249
+ temperature=0.7,
250
+ top_p=0.95,
251
+ top_k=40,
252
+ repetition_penalty=1.1)
253
+
254
+ print(f"Model output: {response}")
255
+ ```
256
+ <!-- README_GPTQ.md-use-from-tgi end -->
257
+ <!-- README_GPTQ.md-use-from-python start -->
258
+ ## Python code example: inference from this GPTQ model
259
+
260
+ ### Install the necessary packages
261
+
262
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
263
+
264
+ ```shell
265
+ pip3 install --upgrade transformers optimum
266
+ # If using PyTorch 2.1 + CUDA 12.x:
267
+ pip3 install --upgrade auto-gptq
268
+ # or, if using PyTorch 2.1 + CUDA 11.x:
269
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
270
+ ```
271
+
272
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
273
+
274
+ ```shell
275
+ pip3 uninstall -y auto-gptq
276
+ git clone https://github.com/PanQiWei/AutoGPTQ
277
+ cd AutoGPTQ
278
+ git checkout v0.5.1
279
+ pip3 install .
280
+ ```
281
+
282
+ ### Example Python code
283
+
284
+ ```python
285
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
286
+
287
+ model_name_or_path = "TheBloke/Yarn-Llama-2-70B-32k-GPTQ"
288
+ # To use a different branch, change revision
289
+ # For example: revision="gptq-4bit-128g-actorder_True"
290
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
291
+ device_map="auto",
292
+ trust_remote_code=True,
293
+ revision="main")
294
+
295
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
296
+
297
+ prompt = "Tell me about AI"
298
+ prompt_template=f'''{prompt}
299
+ '''
300
+
301
+ print("\n\n*** Generate:")
302
+
303
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
304
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
305
+ print(tokenizer.decode(output[0]))
306
+
307
+ # Inference can also be done using transformers' pipeline
308
+
309
+ print("*** Pipeline:")
310
+ pipe = pipeline(
311
+ "text-generation",
312
+ model=model,
313
+ tokenizer=tokenizer,
314
+ max_new_tokens=512,
315
+ do_sample=True,
316
+ temperature=0.7,
317
+ top_p=0.95,
318
+ top_k=40,
319
+ repetition_penalty=1.1
320
+ )
321
+
322
+ print(pipe(prompt_template)[0]['generated_text'])
323
+ ```
324
+ <!-- README_GPTQ.md-use-from-python end -->
325
+
326
+ <!-- README_GPTQ.md-compatibility start -->
327
+ ## Compatibility
328
+
329
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
330
+
331
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
332
+
333
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
334
+ <!-- README_GPTQ.md-compatibility end -->
335
+
336
+ <!-- footer start -->
337
+ <!-- 200823 -->
338
+ ## Discord
339
+
340
+ For further support, and discussions on these models and AI in general, join us at:
341
+
342
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
343
+
344
+ ## Thanks, and how to contribute
345
+
346
+ Thanks to the [chirper.ai](https://chirper.ai) team!
347
+
348
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
349
+
350
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
351
+
352
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
353
+
354
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
355
+
356
+ * Patreon: https://patreon.com/TheBlokeAI
357
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
358
+
359
+ **Special thanks to**: Aemon Algiz.
360
+
361
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
362
+
363
+
364
+ Thank you to all my generous patrons and donaters!
365
+
366
+ And thank you again to a16z for their generous grant.
367
+
368
+ <!-- footer end -->
369
+
370
+ # Original model card: NousResearch's Yarn Llama 2 70B 32K
371
+
372
+
373
+ # Model Card: Yarn-Llama-2-70b-32k
374
+
375
+ [Preprint (arXiv)](https://arxiv.org/abs/2309.00071)
376
+ [GitHub](https://github.com/jquesnelle/yarn)
377
+ ![yarn](https://raw.githubusercontent.com/jquesnelle/yarn/70b/data/proofpile-long-small-32k-70b.csv.png)
378
+
379
+ The authors would like to thank [LAION AI](https://laion.ai/) for their support of compute for this model.
380
+ It was trained on the [JUWELS](https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels) supercomputer.
381
+
382
+ ## Model Description
383
+
384
+ Nous-Yarn-Llama-2-70b-32k is a state-of-the-art language model for long context, further pretrained on long context data for 400 steps using the YaRN extension method.
385
+ It is an extension of [Llama-2-70b-hf](meta-llama/Llama-2-70b-hf) and supports a 32k token context window.
386
+
387
+ To use, pass `trust_remote_code=True` when loading the model, for example
388
+
389
+ ```python
390
+ model = AutoModelForCausalLM.from_pretrained("NousResearch/Yarn-Llama-2-70b-32k",
391
+ use_flash_attention_2=True,
392
+ torch_dtype=torch.bfloat16,
393
+ device_map="auto",
394
+ trust_remote_code=True)
395
+ ```
396
+
397
+ In addition you will need to use the latest version of `transformers` (until 4.35 comes out)
398
+ ```sh
399
+ pip install git+https://github.com/huggingface/transformers
400
+ ```
401
+
402
+ ## Benchmarks
403
+
404
+ Long context benchmarks:
405
+ | Model | Context Window | 1k PPL | 2k PPL | 4k PPL | 8k PPL | 16k PPL | 32k PPL |
406
+ |-------|---------------:|-------:|--------:|------:|-------:|--------:|--------:|
407
+ | [Llama-2-70b-hf](meta-llama/Llama-2-70b-hf) | 4k | 3.71 | 3.27 | 2.96 | - | - | - |
408
+ | [Yarn-Llama-2-70b-32k](https://huggingface.co/NousResearch/Yarn-Llama-2-70b-32k) | 32k | 3.61 | 3.22 | 2.91 | 2.82 | 2.45 | 2.23 |
409
+
410
+ Short context benchmarks showing that quality degradation is minimal:
411
+ | Model | Context Window | ARC-c | MMLU | Truthful QA |
412
+ |-------|---------------:|------:|-----:|------------:|
413
+ | [Llama-2-70b-hf](meta-llama/Llama-2-70b-hf) | 4k | 67.32 | 69.83 | 44.92 |
414
+ | [Yarn-Llama-2-70b-32k](https://huggingface.co/NousResearch/Yarn-Llama-2-70b-32k) | 32k | 67.41 | 68.84 | 46.14 |
415
+
416
+ ## Collaborators
417
+
418
+ - [bloc97](https://github.com/bloc97): Methods, paper and evals
419
+ - [@theemozilla](https://twitter.com/theemozilla): Methods, paper, model training, and evals
420
+ - [@EnricoShippole](https://twitter.com/EnricoShippole): Model training
421
+ - [honglu2875](https://github.com/honglu2875): Paper and evals