File size: 33,959 Bytes
fd9435f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
---
base_model: https://huggingface.co/jondurbin/spicyboros-c34b-2.2
datasets:
- jondurbin/airoboros-2.2
inference: false
license: llama2
model_creator: Jon Durbin
model_name: Spicyboros c34B 2.2
model_type: llama
quantized_by: TheBloke
tags:
- not-for-all-audiences
---

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# Spicyboros c34B 2.2 - GPTQ
- Model creator: [Jon Durbin](https://huggingface.co/jondurbin)
- Original model: [Spicyboros c34B 2.2](https://huggingface.co/jondurbin/spicyboros-c34b-2.2)

<!-- description start -->
## Description

This repo contains GPTQ model files for [Jon Durbin's Spicyboros c34B 2.2](https://huggingface.co/jondurbin/spicyboros-c34b-2.2).

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

<!-- description end -->
<!-- repositories-available start -->
## Repositories available

* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Spicyboros-c34b-2.2-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Spicyboros-c34b-2.2-GGUF)
* [Jon Durbin's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jondurbin/spicyboros-c34b-2.2)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: Chat

```
A chat.
USER: {prompt}
ASSISTANT: 

```

<!-- prompt-template end -->
<!-- licensing start -->
## Licensing

The creator of the source model has listed its license as `llama2`, and this quantization has therefore used that same license.

As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.

In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Jon Durbin's Spicyboros c34B 2.2](https://huggingface.co/jondurbin/spicyboros-c34b-2.2).
<!-- licensing end -->
<!-- README_GPTQ.md-provided-files start -->
## Provided files and GPTQ parameters

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch.  See below for instructions on fetching from different branches.

All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.

<details>
  <summary>Explanation of GPTQ parameters</summary>

- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
- Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used.  Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.

</details>

| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
| [main](https://huggingface.co/TheBloke/Spicyboros-c34b-2.2-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 17.69 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. | 
| [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Spicyboros-c34b-2.2-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 18.33 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | 
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Spicyboros-c34b-2.2-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 20.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | 
| [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Spicyboros-c34b-2.2-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 14.14 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |

<!-- README_GPTQ.md-provided-files end -->

<!-- README_GPTQ.md-download-from-branches start -->
## How to download from branches

- In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Spicyboros-c34b-2.2-GPTQ:main`
- With Git, you can clone a branch with:
```
git clone --single-branch --branch main https://huggingface.co/TheBloke/Spicyboros-c34b-2.2-GPTQ
```
- In Python Transformers code, the branch is the `revision` parameter; see below.
<!-- README_GPTQ.md-download-from-branches end -->
<!-- README_GPTQ.md-text-generation-webui start -->
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).

Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/Spicyboros-c34b-2.2-GPTQ`.
  - To download from a specific branch, enter for example `TheBloke/Spicyboros-c34b-2.2-GPTQ:main`
  - see Provided Files above for the list of branches for each option.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done".
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `Spicyboros-c34b-2.2-GPTQ`
7. The model will automatically load, and is now ready for use!
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
  * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
<!-- README_GPTQ.md-text-generation-webui end -->

<!-- README_GPTQ.md-use-from-python start -->
## How to use this GPTQ model from Python code

### Install the necessary packages

Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.

```shell
pip3 install transformers>=4.32.0 optimum>=1.12.0
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/  # Use cu117 if on CUDA 11.7
```

If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:

```shell
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
pip3 install .
```

### For CodeLlama models only: you must use Transformers 4.33.0 or later.

If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
```shell
pip3 uninstall -y transformers
pip3 install git+https://github.com/huggingface/transformers.git
```

### You can then use the following code

```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_name_or_path = "TheBloke/Spicyboros-c34b-2.2-GPTQ"
# To use a different branch, change revision
# For example: revision="main"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             trust_remote_code=False,
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

prompt = "Tell me about AI"
prompt_template=f'''A chat.
USER: {prompt}
ASSISTANT: 

'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])
```
<!-- README_GPTQ.md-use-from-python end -->

<!-- README_GPTQ.md-compatibility start -->
## Compatibility

The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).

[ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.

[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
<!-- README_GPTQ.md-compatibility end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

# Original model card: Jon Durbin's Spicyboros c34B 2.2


### Overview

__Usage restriction: To use this model, you must agree to the following:__

- Some of the content than can be produced is "toxic"/"harmful", and contains profanity and other types of sensitive content.
- None of the content or views contained in the dataset or generated outputs necessarily align with my personal beliefs or opinions, they are simply text generated by LLMs and/or scraped from the web.
- Use with extreme caution, particularly in locations with less-than-free speech laws.
- You, and you alone are responsible for having downloaded and generated outputs with the model and I am completely indemnified from any and all liabilities.

__Ok, now that the warning is out of the way...__
Another experimental model, using mostly sythetic data generated by [airoboros](https://github.com/jondurbin/airoboros)

Highlights:

- The prompt format has changed!  It is now newlines instead of spaces between system/USER/ASSISTANT (see prompt info below).
- This version also includes "de-alignment" data, to enable less savory interactions and outputs.
- To learn more about the dataset, see: https://hf.co/datasets/jondurbin/airoboros-2.2 (this is the instructions.jsonl file, not instructions-clean.jsonl)
- I re-generated all of the outputs in the dataset that had "Once upon a time" so they'd be less cliche - no guarantees that won't still happen, but in theory it may happen less.
- More multiple choice, better awareness, some alignment for normal use case but system-prompt overridable etc.

__WARNING: This model will gladly spew profane and otherwise NSFW content, if asked, use with care.__

Breakdown of the training data:

| Count  | Category                   |
|--------|----------------------------|
| 60     | quiz                       |
| 63     | card                       |
| 100    | detailed\_writing          |
| 103    | experience                 |
| 114    | greeting                   |
| 200    | song                       |
| 204    | editor                     |
| 250    | counterfactual\_contextual |
| 268    | cot                        |
| 339    | theory\_of\_mind           |
| 460    | misconception              |
| 500    | summarization              |
| 573    | awareness                  |
| 715    | riddle                     |
| 719    | agent                      |
| 800    | plan                       |
| 873    | gtkm                       |
| 966    | rp                         |
| 1000   | stylized\_response         |
| 1000   | wordgame                   |
| 1279   | multiple\_choice           |
| 1641   | joke                       |
| 1785   | writing                    |
| 2155   | contextual                 |
| 2364   | roleplay                   |
| 2508   | trivia                     |
| 5216   | general                    |
| 5779   | coding                     |
| 11367  | orca                       |

In other words, it's a fairly general purpose model, but focuses fairly heavily on instruction response pairs rather than casual chat/roleplay.

*Why do I try to remove censorship?*

- laws vary widely based on time and location
- language model may conflate certain words with laws, e.g. it may think "stealing eggs from a chicken" is illegal
- these models just produce text, what you do with that text is your resonsibility
- many people and industries deal with "sensitive" content; imagine if a court stenographer's equipment filtered illegal content - it would be useless

Huge thank you to the folks over at [a16z](https://a16z.com/) for sponsoring the costs associated with building models and associated tools!


### Prompt format

The prompt format:

```
A chat.
USER: {prompt}
ASSISTANT:
```

The default system prompt ("A chat.") was used for most of the prompts, however it also included a wide sampling of responses with other prompts, particularly in "stylized\_response", "rp", "gtkm", etc.

Here's another example:
```
A chat between Bob (aka USER) and Tom (aka ASSISTANT). Tom is an extremely intelligent 18th century bookkeeper, who speaks loquaciously.
USER: {prompt}
ASSISTANT: 
```

And chat scenario that wouldn't require USER/ASSISTANT (but should use stopping criteria to prevent the model from speaking on your behalf).
```
A chat between old friends: Timmy and Tommy.
{description of characters}

{setting for the chat}
Timmy: *takes a big sip from his coffee* "Ah, sweet, delicious, magical coffee."
Tommy: 
```

__*I strongly suggest adding stopping criteria/early inference stopping on "USER:", and/or whatever names you specify in the system prompt.*__

### Fine-tuning details

https://gist.github.com/jondurbin/e94d5a0eb3868db2877413f53d59fb37

*Note: I used checkpoint 350 for final model, not the full 5 epochs!*

### Helpful usage tips

*The prompts shown here are are just the text that would be included after USER: and before ASSISTANT: in the full prompt format above, the system prompt and USER:/ASSISTANT: have been omited for readability.*

#### Context obedient question answering

By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question.  The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations.

The format for a closed-context prompt is as follows:
```
BEGININPUT
BEGINCONTEXT
[key0: value0]
[key1: value1]
... other metdata ...
ENDCONTEXT
[insert your text blocks here]
ENDINPUT
[add as many other blocks, in the exact same format]
BEGININSTRUCTION
[insert your instruction(s).  The model was tuned with single questions, paragraph format, lists, etc.]
ENDINSTRUCTION
```

It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up.

*The __only__ prompts that need this closed context formating are closed-context instructions.  Normal questions/instructions do not!*

I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it.
- `BEGININPUT` - denotes a new input block
- `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block
- `ENDCONTEXT` - denotes the end of the metadata block for the current input
- [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context.
- `ENDINPUT` - denotes the end of the current input block
- [repeat as many input blocks in this format as you want]
- `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above.
- [instruction(s)]
- `ENDINSTRUCTION` - denotes the end of instruction set

It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to.

Here's a trivial, but important example to prove the point:
```
BEGININPUT
BEGINCONTEXT
date: 2021-01-01
url: https://web.site/123
ENDCONTEXT
In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
ENDINPUT
BEGININSTRUCTION
What color are bluberries?  Source?
ENDINSTRUCTION
```

And the response:
```
Blueberries are now green.
Source:
date: 2021-01-01
url: https://web.site/123
```

#### Coding

You can ask for fairly complex coding instructions with multiple criteria, e.g.:

```
Create a python application with the following requirements:
- Asyncio FastAPI webserver
- ping endpoint that returns the current date in JSON format
- file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate
```

Or inline criteria:

```
Write a multi-threaded TCP server in C that accepts a "GET [key]" input and "SET [key] [value]" input, and uses a binary tree to get and store the input values.
```

You can also optionally add a single space and "PLAINFORMAT" at the end of your prompt to avoid backticks, explanations, etc. and just print the code, e.g.:

```
Write a websocket application in node.js. PLAINFORMAT
```

#### Agent/function calling

The dataset includes many examples of function/args generation based on input criteria.  This is somewhat similar to the OpenAI function calling, but the output is either JSON or YAML.

Example prompt:
```
As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format.

Input: I want to know how many times 'Python' is mentioned in my text file.

Available functions:
file_analytics:
  description: This tool performs various operations on a text file.
  params:
    action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc.
    filters:
      keyword: The word or phrase we want to search for.
```

Response:
```json
{
  "function": "file_analytics",
  "params": {
    "action": "count_occurrences",
    "filters": {
      "keyword": "Python"
    }
  }
}
```

#### Chain-of-thought

You can ask for several possible responses to a given problem, with a ranking and final answer selection.

Example prompt:

```
A group of people decide to play a round-robin tournament where every player plays every other player exactly once. If a total of 45 games were played, how many players participated in the tournament? Offer several potential answers, rank them according to mathematical logic, and pick the most feasible one.
```

Example response:
```
Solution 1:
In a round-robin tournament, each player plays every other player exactly once. This means that the total number of games played is equal to the combination of all players taken two at a time (since a game involves two players). 

The formula for combinations is nC2 = n(n-1)/2, where n is the total number of players. We know that nC2 equals 45 (the total number of games), so we can set up the equation as follows:

n(n-1)/2 = 45

Solving this equation gives us n=10.

Final answer: There were 10 players in the tournament.

Solution 2:
Another way to approach this problem is by using the concept of triangular numbers. Triangular numbers are a sequence of numbers where each number can be represented as a triangle with dots. The nth triangular number is given by the sum of the first n natural numbers. 

If we consider each game as a dot and each player as a side of the triangle, then the total number of games (45) would correspond to the 9th triangular number because 1+2+3+4+5+6+7+8+9=45. However, since each side of the triangle represents a player, and there's one more player than sides in our model (because the last player has no one left to play against), we need to add one more to get the total number of players.

Final answer: There were 10 players in the tournament.

Solution 3:
We could also use trial and error to solve this problem. Starting from a small number of players, we calculate how many games would be played in a round-robin tournament until we reach 45 games. For example, with 2 players, only 1 game is played; with 3 players, 3 games are played; with 4 players, 6 games are played, and so on. Continuing this process, we find that with 10 players, 45 games are played.

Final answer: There were 10 players in the tournament.

Ranking of solutions from best to worst:
1. Solution 1: This solution uses direct mathematical reasoning based on the properties of a round-robin tournament and solves an equation to find the answer.
2. Solution 2: This solution uses the concept of triangular numbers which requires additional steps and knowledge beyond the immediate problem context, but still arrives at the correct answer.
3. Solution 3: This solution relies on trial and error, which is less efficient and reliable than the other methods, but it eventually gets to the right answer.

Best and final answer: There were 10 players in the tournament.
```

#### reWOO style execution planning

The model now supports execution planning for complex instructions that would require making use of several tools.  The output is just the plan, you must implement a mechanism to parse the output and actually call the functions!

Example prompt:
```
Please construct a systematic plan to generate an optimal response to the user instruction, utilizing a set of provided tools. Each plan will correspond to an evidence value, which will be the output of one of the available functions given an input string
that could be the user's question, one or more prior evidence values, or a combination of both.

Here are the tools available to be called:
DuckDuckGo[input]: Tool that enables the user to search for information using the DuckDuckGo search engine. This tool is helpful in locating a suitable list of sites that may contain the answer to the user's query. It does not directly answer the question but finds a list of sites that might have the answer.
TextScraper[input]: Load one or more websites from the input string containing newline delimited links, where input is one or more links, and produces plain text output containing the content of the links.
HyperlinkExtractor[input]: Extract links from plain text and produces a plain text, newline delimited response of links.
KnowledgeModel[input]: Question answering language model, particularly useful in answering questions based on an input passage of text. The input must be a text question that references an :evidence[n]: variable, e.g. What color is the cat, given :evidence1:?

The output should be in format:
Plan: [first action to take based on input question]
:evidence0: = [function to call with input parameter]
Plan: [next action to take, based on result of :evidence0:]
:evidence1: = [next function to call and input parameter, which may include reference to previous evidence, e.g. "Given context :evidence0"]
...
Answer: [:evidence[n]: containing the final answer.]

Question: Who won the Nobel Prize in Literature in 2020 and what is their most famous work?
```

Response:
```
Plan: Begin by conducting a web search to find out who won the Nobel Prize in Literature in 2020.
:evidence0: = DuckDuckGo[Nobel Prize in Literature 2020 winner]
Plan: Utilize the KnowledgeModel to interpret the search results and find the name of the laureate.
:evidence1: = KnowledgeModel[Who won the Nobel Prize in Literature in 2020, given :evidence0:?]
Plan: Conduct another web search to find the most famous work of the identified laureate.
:evidence2: = DuckDuckGo[Most famous work of :evidence1:]
Plan: Extract the relevant links from the DuckDuckGo search results for a more focused search.
:evidence3: = HyperlinkExtractor[:evidence2:]
Plan: Use the TextScraper tool to extract information from the relevant links.
:evidence4: = TextScraper[:evidence3:]
Plan: Finally, utilize the KnowledgeModel to identify and summarize the most famous work of the laureate from the extracted information.
:evidence5: = KnowledgeModel[What is the most famous work of :evidence1:, given :evidence4:?]
Answer: :evidence5:
```

For this to be useful, you'd have to parse the output plan text, and implement/call each of the functions.  This is just pseudo-code, completely untested off the top of my head, and obviously would requiring full implementation + hardening:

```python
import re
import requests

def inject_context(input_text, **context):
    for ref in set(re.findall(r"(:evidence[0-9]+:)", input_text, re.I)):
        input_text = input_text.replace(ref, context.get(ref, ""))
    return input_text

def duckduckgo(input_text, **context):
    search_string = inject_context(input_text, **context)
    ... search via duck duck go using search_string
    ... return text content

def link_extractor(input_text, **context):
    input_text = inject_context(input_text, **context)
    return "\n".join(list(set(re.findall(r"(https?://[^\s]+?\.?)", input_text, re.I))))

def scrape(input_text, **context):
  input_text = inject_context(input_text, **context)
  text = []
  for link in input_text.splitlines():
    text.append(requests.get(link).text)
  return "\n".join(text)

def infer(input_text, **context)
  prompt = inject_context(input_text, **context)
  ... call model with prompt, return output

def parse_plan(plan):
    method_map = {
      "DuckDuckGo": duckduckgo,
      "HyperlinkExtractor": link_extractor,
      "KnowledgeModel": infer,
      "TextScraper": scrape,
    }
    context = {}
    for line in plan.strip().splitlines():
        if line.startswith("Plan:"):
            print(line)
            continue
        parts = re.match("^(:evidence[0-9]+:)\s*=\s*([^\[]+])(\[.*\])\s$", line, re.I)
        if not parts:
          if line.startswith("Answer: "):
            return context.get(line.split(" ")[-1].strip(), "Answer couldn't be generated...")
          raise RuntimeError("bad format: " + line)
        context[parts.group(1)] = method_map[parts.group(2)](parts.group(3), **context)
```

### Contribute

If you're interested in new functionality, particularly a new "instructor" type to generate a specific type of training data,
take a look at the dataset generation tool repo: https://github.com/jondurbin/airoboros and either make a PR or open an issue with details.

To help me with the OpenAI/compute costs:

- https://bmc.link/jondurbin
- ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11
- BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf

### Licence and usage restrictions

The airoboros 2.2 models are built on top of llama-2/codellama.

The llama-2 base model has a custom Meta license:
- See the [meta-license/LICENSE.txt](meta-license/LICENSE.txt) file attached for the original license provided by Meta.
- See also [meta-license/USE_POLICY.md](meta-license/USE_POLICY.md) and [meta-license/Responsible-Use-Guide.pdf](meta-license/Responsible-Use-Guide.pdf), also provided by Meta.

The fine-tuning data was mostly generated by OpenAI API calls to gpt-4, via [airoboros](https://github.com/jondurbin/airoboros)

The ToS for OpenAI API usage has a clause preventing the output from being used to train a model that __competes__ with OpenAI

- what does *compete* actually mean here?
- these small open source models will not produce output anywhere near the quality of gpt-4, or even gpt-3.5, so I can't imagine this could credibly be considered competing in the first place
- if someone else uses the dataset to do the same, they wouldn't necessarily be violating the ToS because they didn't call the API, so I don't know how that works
- the training data used in essentially all large language models includes a significant amount of copyrighted or otherwise non-permissive licensing in the first place
- other work using the self-instruct method, e.g. the original here: https://github.com/yizhongw/self-instruct released the data and model as apache-2

I am purposingly leaving this license ambiguous (other than the fact you must comply with the Meta original license for llama-2) because I am not a lawyer and refuse to attempt to interpret all of the terms accordingly.

Your best bet is probably to avoid using this commercially due to the OpenAI API usage.

Either way, by using this model, you agree to completely indemnify me.