TheBloke commited on
Commit
424fdce
1 Parent(s): ef0fbe1

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +428 -0
README.md ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: https://huggingface.co/NousResearch/Redmond-Puffin-13B
3
+ datasets:
4
+ - LDJnr/Puffin
5
+ inference: false
6
+ language:
7
+ - eng
8
+ license:
9
+ - mit
10
+ model_creator: NousResearch
11
+ model_name: Redmond Puffin 13B V1.3
12
+ model_type: llama
13
+ prompt_template: '### human: {prompt}
14
+
15
+
16
+ ### response:
17
+
18
+ '
19
+ quantized_by: TheBloke
20
+ tags:
21
+ - llama-2
22
+ - sft
23
+ ---
24
+
25
+ <!-- header start -->
26
+ <!-- 200823 -->
27
+ <div style="width: auto; margin-left: auto; margin-right: auto">
28
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
29
+ </div>
30
+ <div style="display: flex; justify-content: space-between; width: 100%;">
31
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
32
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
33
+ </div>
34
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
35
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
36
+ </div>
37
+ </div>
38
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
39
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
40
+ <!-- header end -->
41
+
42
+ # Redmond Puffin 13B V1.3 - AWQ
43
+ - Model creator: [NousResearch](https://huggingface.co/NousResearch)
44
+ - Original model: [Redmond Puffin 13B V1.3](https://huggingface.co/NousResearch/Redmond-Puffin-13B)
45
+
46
+ <!-- description start -->
47
+ ## Description
48
+
49
+ This repo contains AWQ model files for [NousResearch's Redmond Puffin 13B V1.3](https://huggingface.co/NousResearch/Redmond-Puffin-13B).
50
+
51
+
52
+ ### About AWQ
53
+
54
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
55
+
56
+ It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
57
+ <!-- description end -->
58
+ <!-- repositories-available start -->
59
+ ## Repositories available
60
+
61
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Redmond-Puffin-13B-AWQ)
62
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GPTQ)
63
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGUF)
64
+ * [NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Redmond-Puffin-13B)
65
+ <!-- repositories-available end -->
66
+
67
+ <!-- prompt-template start -->
68
+ ## Prompt template: Human-Response2
69
+
70
+ ```
71
+ ### human: {prompt}
72
+
73
+ ### response:
74
+
75
+ ```
76
+
77
+ <!-- prompt-template end -->
78
+ <!-- licensing start -->
79
+ ## Licensing
80
+
81
+ The creator of the source model has listed its license as `['mit']`, and this quantization has therefore used that same license.
82
+
83
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
84
+
85
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [NousResearch's Redmond Puffin 13B V1.3](https://huggingface.co/NousResearch/Redmond-Puffin-13B).
86
+ <!-- licensing end -->
87
+ <!-- README_AWQ.md-provided-files start -->
88
+ ## Provided files and AWQ parameters
89
+
90
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
91
+
92
+ Models are released as sharded safetensors files.
93
+
94
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
95
+ | ------ | ---- | -- | ----------- | ------- | ---- |
96
+ | [main](https://huggingface.co/TheBloke/Redmond-Puffin-13B-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.25 GB
97
+
98
+ <!-- README_AWQ.md-provided-files end -->
99
+
100
+ <!-- README_AWQ.md-use-from-vllm start -->
101
+ ## Serving this model from vLLM
102
+
103
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
104
+
105
+ - When using vLLM as a server, pass the `--quantization awq` parameter, for example:
106
+
107
+ ```shell
108
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/Redmond-Puffin-13B-AWQ --quantization awq
109
+ ```
110
+
111
+ When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
112
+
113
+ ```python
114
+ from vllm import LLM, SamplingParams
115
+
116
+ prompts = [
117
+ "Hello, my name is",
118
+ "The president of the United States is",
119
+ "The capital of France is",
120
+ "The future of AI is",
121
+ ]
122
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
123
+
124
+ llm = LLM(model="TheBloke/Redmond-Puffin-13B-AWQ", quantization="awq")
125
+
126
+ outputs = llm.generate(prompts, sampling_params)
127
+
128
+ # Print the outputs.
129
+ for output in outputs:
130
+ prompt = output.prompt
131
+ generated_text = output.outputs[0].text
132
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
133
+ ```
134
+ <!-- README_AWQ.md-use-from-vllm start -->
135
+
136
+ <!-- README_AWQ.md-use-from-python start -->
137
+ ## How to use this AWQ model from Python code
138
+
139
+ ### Install the necessary packages
140
+
141
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later
142
+
143
+ ```shell
144
+ pip3 install autoawq
145
+ ```
146
+
147
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
148
+
149
+ ```shell
150
+ pip3 uninstall -y autoawq
151
+ git clone https://github.com/casper-hansen/AutoAWQ
152
+ cd AutoAWQ
153
+ pip3 install .
154
+ ```
155
+
156
+ ### You can then try the following example code
157
+
158
+ ```python
159
+ from awq import AutoAWQForCausalLM
160
+ from transformers import AutoTokenizer
161
+
162
+ model_name_or_path = "TheBloke/Redmond-Puffin-13B-AWQ"
163
+
164
+ # Load model
165
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
166
+ trust_remote_code=False, safetensors=True)
167
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
168
+
169
+ prompt = "Tell me about AI"
170
+ prompt_template=f'''### human: {prompt}
171
+
172
+ ### response:
173
+
174
+ '''
175
+
176
+ print("\n\n*** Generate:")
177
+
178
+ tokens = tokenizer(
179
+ prompt_template,
180
+ return_tensors='pt'
181
+ ).input_ids.cuda()
182
+
183
+ # Generate output
184
+ generation_output = model.generate(
185
+ tokens,
186
+ do_sample=True,
187
+ temperature=0.7,
188
+ top_p=0.95,
189
+ top_k=40,
190
+ max_new_tokens=512
191
+ )
192
+
193
+ print("Output: ", tokenizer.decode(generation_output[0]))
194
+
195
+ # Inference can also be done using transformers' pipeline
196
+ from transformers import pipeline
197
+
198
+ print("*** Pipeline:")
199
+ pipe = pipeline(
200
+ "text-generation",
201
+ model=model,
202
+ tokenizer=tokenizer,
203
+ max_new_tokens=512,
204
+ do_sample=True,
205
+ temperature=0.7,
206
+ top_p=0.95,
207
+ top_k=40,
208
+ repetition_penalty=1.1
209
+ )
210
+
211
+ print(pipe(prompt_template)[0]['generated_text'])
212
+ ```
213
+ <!-- README_AWQ.md-use-from-python end -->
214
+
215
+ <!-- README_AWQ.md-compatibility start -->
216
+ ## Compatibility
217
+
218
+ The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).
219
+
220
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
221
+ <!-- README_AWQ.md-compatibility end -->
222
+
223
+ <!-- footer start -->
224
+ <!-- 200823 -->
225
+ ## Discord
226
+
227
+ For further support, and discussions on these models and AI in general, join us at:
228
+
229
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
230
+
231
+ ## Thanks, and how to contribute
232
+
233
+ Thanks to the [chirper.ai](https://chirper.ai) team!
234
+
235
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
236
+
237
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
238
+
239
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
240
+
241
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
242
+
243
+ * Patreon: https://patreon.com/TheBlokeAI
244
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
245
+
246
+ **Special thanks to**: Aemon Algiz.
247
+
248
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
249
+
250
+
251
+ Thank you to all my generous patrons and donaters!
252
+
253
+ And thank you again to a16z for their generous grant.
254
+
255
+ <!-- footer end -->
256
+
257
+ # Original model card: NousResearch's Redmond Puffin 13B V1.3
258
+
259
+
260
+ ## **Redmond-Puffin-13b-V1.3**
261
+
262
+ **The first commercially available language model released by Nous Research!**
263
+
264
+ Redmond-Puffin-13B is likely the worlds first llama-2 based, fine-tuned language models, leveraging a hand curated set of 3K high quality examples, many of which take full advantage of the 4096 context length of Llama 2. This model was fine-tuned by Nous Research, with LDJ leading the training and dataset curation, along with significant dataset formation contributions by J-Supha.
265
+
266
+ Special thank you to Redmond AI for sponsoring the compute.
267
+
268
+ Special thank you to Emozilla for assisting with training experimentations and many issues encountered during training.
269
+
270
+ Notable mentions for assisting in some of the training issues goes to: Caseus and Teknium.
271
+
272
+ ## Model Training
273
+
274
+ Redmond-Puffin 13B-V1.3 is a new model trained for multiple epochs on a dataset of 3,000 carefully curated GPT-4 examples, most of which are long context conversations between a real human and GPT-4.
275
+
276
+ Additional data came from carefully curated sub sections of datasets such as CamelAI's Physics, Chemistry, Biology and Math.
277
+
278
+ ## Prompt Format
279
+
280
+ The reccomended model usage is:
281
+
282
+ ```
283
+ ### human:
284
+
285
+ ### response:
286
+ ```
287
+ Optional reccomended pre-prompt / system prompt:
288
+
289
+ ```
290
+ ### human: Interact in conversation to the best of your ability, please be concise, logical, intelligent and coherent.
291
+
292
+ ### response: Sure! sounds good.
293
+ ```
294
+
295
+ ## When should I use Puffin or Hermes 2?
296
+
297
+ Puffin and Hermes-2 both beat previous SOTA for GPT4ALL benchmarks, with Hermes-2 winning by a 0.1% margin over Puffin.
298
+
299
+ - Hermes 2 is trained on purely single turn instruction examples.
300
+
301
+ - Puffin is trained mostly on multi-turn, long context, highly curated and cleaned GPT-4 conversations with real humans, as well as curated single-turn examples relating to Physics, Bio, Math and Chem.
302
+
303
+ For these reasons, it's reccomended to give Puffin a try if you want to have multi-turn conversations and/or long context communication.
304
+
305
+ ## Example Outputs!:
306
+
307
+ ![puffin](https://i.imgur.com/P0MsN8B.png)
308
+
309
+ ![puffin](https://i.imgur.com/8EO3ThV.png)
310
+
311
+ ![puffin](https://i.imgur.com/5IWolFw.png)
312
+
313
+ ![puffin](https://i.imgur.com/TQui8m7.png)
314
+
315
+ ![puffin](https://i.imgur.com/tderIfl.png)
316
+
317
+ ## Notable Features:
318
+
319
+ - The first Llama-2 based fine-tuned model released by Nous Research.
320
+
321
+ - Ability to recall information upto 2023 without internet (ChatGPT cut off date is in 2021)
322
+
323
+ - Pretrained on 2 trillion tokens of text. (This is double the amount of most Open LLM's)
324
+
325
+ - Pretrained with a context length of 4096 tokens, and fine-tuned on a significant amount of multi-turn conversations reaching that full token limit.
326
+
327
+ - The first commercially available language model released by Nous Research.
328
+
329
+ ## Current Limitations
330
+
331
+ Some token mismatch problems and formatting issues have been idenitifed, these may very possibly effect the current output quality.
332
+
333
+ We plan to have these solved in an updated Puffin model in the very near future, please stay tuned!
334
+
335
+ ## Future Plans
336
+
337
+ This is a relatively early build amongst the grand plans for the future of Puffin!
338
+
339
+ Current limitations: Some token mismatch problems have been identified, these may effect the current output quality, we plan to have this solved in Puffin V2 along with other improvements.
340
+
341
+ ## How you can help!
342
+
343
+ In the near future we plan on leveraging the help of domain specific expert volunteers to eliminate any mathematically/verifiably incorrect answers from our training curations.
344
+
345
+ If you have at-least a bachelors in mathematics, physics, biology or chemistry and would like to volunteer even just 30 minutes of your expertise time, please contact LDJ on discord!
346
+
347
+ ## Benchmarks!
348
+
349
+ As of Puffins release, it achieves a new SOTA for the GPT4All benchmarks! Supplanting Hermes for the #1 position!
350
+ (Rounded to nearest tenth)
351
+
352
+ Previous Sota: Hermes - 68.8
353
+ New Sota: Puffin - 69.9 (+1.1)
354
+
355
+ note: After release, Puffin has since had its average GPT4All score beaten by 0.1%, by Nous' very own Model Hermes-2!
356
+ Latest SOTA w/ Hermes 2- 70.0 (+0.1 over Puffins 69.9 score)
357
+
358
+ That being said, Puffin supplants Hermes-2 for the #1 spot in Arc-E, HellaSwag and Winogrande!
359
+
360
+ Puffin also perfectly ties with Hermes in PIQA, however Hermes-2 still excels in much of Big Bench and AGIEval, so it's highly reccomended you give it a try as well!
361
+
362
+ GPT4all :
363
+
364
+ ```
365
+ | Task |Version| Metric |Value | |Stderr|
366
+ |-------------|------:|--------|-----:|---|-----:|
367
+ |arc_challenge| 0|acc |0.4983|± |0.0146|
368
+ | | |acc_norm|0.5068|± |0.0146|
369
+ |arc_easy | 0|acc |0.7980|± |0.0082|
370
+ | | |acc_norm|0.7757|± |0.0086|
371
+ |boolq | 1|acc |0.8150|± |0.0068|
372
+ |hellaswag | 0|acc |0.6132|± |0.0049|
373
+ | | |acc_norm|0.8043|± |0.0040|
374
+ |openbookqa | 0|acc |0.3560|± |0.0214|
375
+ | | |acc_norm|0.4560|± |0.0223|
376
+ |piqa | 0|acc |0.7954|± |0.0094|
377
+ | | |acc_norm|0.8069|± |0.0092|
378
+ |winogrande | 0|acc |0.7245|± |0.0126|
379
+ ```
380
+
381
+
382
+
383
+ ```
384
+ | Task |Version| Metric |Value | |Stderr|
385
+ |------------------------------------------------|------:|---------------------|-----:|---|-----:|
386
+ |bigbench_causal_judgement | 0|multiple_choice_grade|0.5368|± |0.0363|
387
+ |bigbench_date_understanding | 0|multiple_choice_grade|0.7127|± |0.0236|
388
+ |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.3023|± |0.0286|
389
+ |bigbench_geometric_shapes | 0|multiple_choice_grade|0.1003|± |0.0159|
390
+ | | |exact_str_match |0.0000|± |0.0000|
391
+ |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.2520|± |0.0194|
392
+ |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.1743|± |0.0143|
393
+ |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.4200|± |0.0285|
394
+ |bigbench_movie_recommendation | 0|multiple_choice_grade|0.2900|± |0.0203|
395
+ |bigbench_navigate | 0|multiple_choice_grade|0.5000|± |0.0158|
396
+ |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.5430|± |0.0111|
397
+ |bigbench_ruin_names | 0|multiple_choice_grade|0.4442|± |0.0235|
398
+ |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.2074|± |0.0128|
399
+ |bigbench_snarks | 0|multiple_choice_grade|0.5083|± |0.0373|
400
+ |bigbench_sports_understanding | 0|multiple_choice_grade|0.4970|± |0.0159|
401
+ |bigbench_temporal_sequences | 0|multiple_choice_grade|0.3260|± |0.0148|
402
+ |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2136|± |0.0116|
403
+ |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1326|± |0.0081|
404
+ |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.4200|± |0.0285|
405
+ ```
406
+
407
+ AGI Eval:
408
+
409
+ ```
410
+ | Task |Version| Metric |Value | |Stderr|
411
+ |------------------------------|------:|--------|-----:|---|-----:|
412
+ |agieval_aqua_rat | 0|acc |0.2283|± |0.0264|
413
+ | | |acc_norm|0.2244|± |0.0262|
414
+ |agieval_logiqa_en | 0|acc |0.2780|± |0.0176|
415
+ | | |acc_norm|0.3164|± |0.0182|
416
+ |agieval_lsat_ar | 0|acc |0.2348|± |0.0280|
417
+ | | |acc_norm|0.2043|± |0.0266|
418
+ |agieval_lsat_lr | 0|acc |0.3392|± |0.0210|
419
+ | | |acc_norm|0.2961|± |0.0202|
420
+ |agieval_lsat_rc | 0|acc |0.4387|± |0.0303|
421
+ | | |acc_norm|0.3569|± |0.0293|
422
+ |agieval_sat_en | 0|acc |0.5874|± |0.0344|
423
+ | | |acc_norm|0.5194|± |0.0349|
424
+ |agieval_sat_en_without_passage| 0|acc |0.4223|± |0.0345|
425
+ | | |acc_norm|0.3447|± |0.0332|
426
+ |agieval_sat_math | 0|acc |0.3364|± |0.0319|
427
+ | | |acc_norm|0.2773|± |0.0302|
428
+ ```