TheBloke commited on
Commit
6cd8d28
1 Parent(s): d1ae0d5

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -33
README.md CHANGED
@@ -44,6 +44,8 @@ This repo contains GGML format model files for [NousResearch's Nous Puffin 70B](
44
 
45
  The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.
46
 
 
 
47
  ### About GGML
48
 
49
  GPU acceleration is now available for Llama 2 70B GGML files, with both CUDA (NVidia) and Metal (macOS). The following clients/libraries are known to work with these files, including with GPU acceleration:
@@ -68,6 +70,7 @@ GPU acceleration is now available for Llama 2 70B GGML files, with both CUDA (NV
68
  {prompt}
69
 
70
  ### RESPONSE:
 
71
  ```
72
 
73
  <!-- compatibility_ggml start -->
@@ -116,38 +119,8 @@ Refer to the Provided Files table below to see what files use which methods, and
116
  | [nous-puffin-70b.ggmlv3.Q5_0.bin](https://huggingface.co/TheBloke/Nous-Puffin-70B-GGML/blob/main/nous-puffin-70b.ggmlv3.Q5_0.bin) | Q5_0 | 5 | 47.46 GB| 49.96 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
117
  | [nous-puffin-70b.ggmlv3.Q5_K_S.bin](https://huggingface.co/TheBloke/Nous-Puffin-70B-GGML/blob/main/nous-puffin-70b.ggmlv3.Q5_K_S.bin) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
118
  | [nous-puffin-70b.ggmlv3.Q5_K_M.bin](https://huggingface.co/TheBloke/Nous-Puffin-70B-GGML/blob/main/nous-puffin-70b.ggmlv3.Q5_K_M.bin) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
119
- | nous-puffin-70b.ggmlv3.q5_1.bin | q5_1 | 5 | 51.76 GB | 54.26 GB | Original quant method, 5-bit. Higher accuracy, slower inference than q5_0. |
120
- | nous-puffin-70b.ggmlv3.q6_K.bin | q6_K | 6 | 56.59 GB | 59.09 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
121
- | nous-puffin-70b.ggmlv3.q8_0.bin | q8_0 | 8 | 73.23 GB | 75.73 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
122
-
123
- ### q5_1, q6_K and q8_0 files require expansion from archive
124
 
125
- **Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the q6_K and q8_0 files as multi-part ZIP files. They are not compressed, they are just for storing a .bin file in two parts.
126
-
127
- <details>
128
- <summary>Click for instructions regarding q5_1, q6_K and q8_0 files</summary>
129
-
130
- ### q5_1
131
- Please download:
132
- * `nous-puffin-70b.ggmlv3.q5_1.zip`
133
- * `nous-puffin-70b.ggmlv3.q5_1.z01`
134
-
135
- ### q6_K
136
- Please download:
137
- * `nous-puffin-70b.ggmlv3.q6_K.zip`
138
- * `nous-puffin-70b.ggmlv3.q6_K.z01`
139
-
140
- ### q8_0
141
- Please download:
142
- * `nous-puffin-70b.ggmlv3.q8_0.zip`
143
- * `nous-puffin-70b.ggmlv3.q8_0.z01`
144
-
145
- Then extract the .zip archive. This will will expand both parts automatically. On Linux I found I had to use `7zip` - the basic `unzip` tool did not work. Example:
146
- ```
147
- sudo apt update -y && sudo apt install 7zip
148
- 7zz x nous-puffin-70b.ggmlv3.q6_K.zip
149
- ```
150
- </details>
151
 
152
  ## How to run in `llama.cpp`
153
 
@@ -158,7 +131,7 @@ For compatibility with latest llama.cpp, please use GGUF files instead.
158
  I use the following command line; adjust for your tastes and needs:
159
 
160
  ```
161
- ./main -t 10 -ngl 40 -gqa 8 -m nous-puffin-70b.ggmlv3.q4_K_M.bin --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### HUMAN:\nWrite a story about llamas\n\n### RESPONSE:"
162
  ```
163
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If you are fully offloading the model to GPU, use `-t 1`
164
 
@@ -199,7 +172,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
199
 
200
  **Special thanks to**: Aemon Algiz.
201
 
202
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
203
 
204
 
205
  Thank you to all my generous patrons and donaters!
 
44
 
45
  The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.
46
 
47
+ Please use the GGUF models instead.
48
+
49
  ### About GGML
50
 
51
  GPU acceleration is now available for Llama 2 70B GGML files, with both CUDA (NVidia) and Metal (macOS). The following clients/libraries are known to work with these files, including with GPU acceleration:
 
70
  {prompt}
71
 
72
  ### RESPONSE:
73
+
74
  ```
75
 
76
  <!-- compatibility_ggml start -->
 
119
  | [nous-puffin-70b.ggmlv3.Q5_0.bin](https://huggingface.co/TheBloke/Nous-Puffin-70B-GGML/blob/main/nous-puffin-70b.ggmlv3.Q5_0.bin) | Q5_0 | 5 | 47.46 GB| 49.96 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
120
  | [nous-puffin-70b.ggmlv3.Q5_K_S.bin](https://huggingface.co/TheBloke/Nous-Puffin-70B-GGML/blob/main/nous-puffin-70b.ggmlv3.Q5_K_S.bin) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
121
  | [nous-puffin-70b.ggmlv3.Q5_K_M.bin](https://huggingface.co/TheBloke/Nous-Puffin-70B-GGML/blob/main/nous-puffin-70b.ggmlv3.Q5_K_M.bin) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
 
 
 
 
 
122
 
123
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
 
125
  ## How to run in `llama.cpp`
126
 
 
131
  I use the following command line; adjust for your tastes and needs:
132
 
133
  ```
134
+ ./main -t 10 -ngl 40 -gqa 8 -m nous-puffin-70b.ggmlv3.q4_K_M.bin --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### HUMAN:\n{prompt}\n\n### RESPONSE:"
135
  ```
136
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If you are fully offloading the model to GPU, use `-t 1`
137
 
 
172
 
173
  **Special thanks to**: Aemon Algiz.
174
 
175
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
176
 
177
 
178
  Thank you to all my generous patrons and donaters!