File size: 24,848 Bytes
95a2832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a30ebd3
 
4de92e8
 
 
 
 
 
 
95a2832
a30ebd3
95a2832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a30ebd3
95a2832
 
 
 
 
 
 
 
a30ebd3
95a2832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a30ebd3
 
 
 
 
 
 
 
 
 
 
 
95a2832
 
 
ddaa49f
95a2832
ddaa49f
95a2832
ddaa49f
 
 
 
 
 
 
95a2832
ddaa49f
 
 
 
95a2832
ddaa49f
95a2832
a30ebd3
ddaa49f
 
 
 
 
 
 
 
95a2832
ddaa49f
 
 
95a2832
ddaa49f
 
95a2832
a30ebd3
 
 
 
 
 
 
 
4de92e8
a30ebd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95a2832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a30ebd3
95a2832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a30ebd3
 
95a2832
 
a30ebd3
95a2832
 
 
 
a30ebd3
95a2832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a30ebd3
95a2832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a30ebd3
95a2832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a30ebd3
95a2832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a30ebd3
95a2832
 
 
a30ebd3
 
95a2832
 
a30ebd3
95a2832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
---
inference: false
language:
- en
license: llama2
model_creator: NousResearch
model_link: https://huggingface.co/NousResearch/Nous-Hermes-Llama2-70b
model_name: Nous Hermes Llama2 70B
model_type: llama
quantized_by: TheBloke
tags:
- llama-2
- self-instruct
- distillation
- synthetic instruction
---

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# Nous Hermes Llama2 70B - GGUF
- Model creator: [NousResearch](https://huggingface.co/NousResearch)
- Original model: [Nous Hermes Llama2 70B](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-70b)

## Description

This repo contains GGUF format model files for [NousResearch's Nous Hermes Llama2 70B](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-70b).

<!-- README_GGUF.md-about-gguf start -->
### About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.

Here are a list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp).
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with full GPU accel across multiple platforms and GPU architectures. Especially good for story telling.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.

<!-- README_GGUF.md-about-gguf end -->
<!-- repositories-available start -->
## Repositories available

* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GGUF)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GGML)
* [NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-70b)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: Alpaca-InstructOnly

```
### Instruction:

{prompt}

### Response:

```

<!-- prompt-template end -->
<!-- compatibility_gguf start -->
## Compatibility

These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)

They are now also compatible with many third party UIs and libraries - please see the list at the top of the README.

## Explanation of quantisation methods
<details>
  <summary>Click to see details</summary>

The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw

Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->

<!-- README_GGUF.md-provided-files start -->
## Provided files

| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [nous-hermes-llama2-70b.Q2_K.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GGUF/blob/main/nous-hermes-llama2-70b.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
| [nous-hermes-llama2-70b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GGUF/blob/main/nous-hermes-llama2-70b.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
| [nous-hermes-llama2-70b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GGUF/blob/main/nous-hermes-llama2-70b.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
| [nous-hermes-llama2-70b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GGUF/blob/main/nous-hermes-llama2-70b.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
| [nous-hermes-llama2-70b.Q4_0.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GGUF/blob/main/nous-hermes-llama2-70b.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [nous-hermes-llama2-70b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GGUF/blob/main/nous-hermes-llama2-70b.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
| [nous-hermes-llama2-70b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GGUF/blob/main/nous-hermes-llama2-70b.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |
| [nous-hermes-llama2-70b.Q5_0.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GGUF/blob/main/nous-hermes-llama2-70b.Q5_0.gguf) | Q5_0 | 5 | 47.46 GB| 49.96 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [nous-hermes-llama2-70b.Q5_K_S.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GGUF/blob/main/nous-hermes-llama2-70b.Q5_K_S.gguf) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | large, low quality loss - recommended |
| [nous-hermes-llama2-70b.Q5_K_M.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GGUF/blob/main/nous-hermes-llama2-70b.Q5_K_M.gguf) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | large, very low quality loss - recommended |
| nous-hermes-llama2-70b.Q6_K.gguf | Q6_K | 6 | 56.59 GB| 59.09 GB | very large, extremely low quality loss |
| nous-hermes-llama2-70b.Q8_0.gguf | Q8_0 | 8 | 73.29 GB| 75.79 GB | very large, extremely low quality loss - not recommended |

**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

### Q6_K and Q8_0 files are split and require joining

**Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files.

<details>
  <summary>Click for instructions regarding Q6_K and Q8_0 files</summary>
   
### q6_K 
Please download:
* `nous-hermes-llama2-70b.Q6_K.gguf-split-a`
* `nous-hermes-llama2-70b.Q6_K.gguf-split-b`

### q8_0
Please download:
* `nous-hermes-llama2-70b.Q8_0.gguf-split-a`
* `nous-hermes-llama2-70b.Q8_0.gguf-split-b`

To join the files, do the following:

Linux and macOS:
```
cat nous-hermes-llama2-70b.Q6_K.gguf-split-* > nous-hermes-llama2-70b.Q6_K.gguf && rm nous-hermes-llama2-70b.Q6_K.gguf-split-*
cat nous-hermes-llama2-70b.Q8_0.gguf-split-* > nous-hermes-llama2-70b.Q8_0.gguf && rm nous-hermes-llama2-70b.Q8_0.gguf-split-*
```
Windows command line:
```
COPY /B nous-hermes-llama2-70b.Q6_K.gguf-split-a + nous-hermes-llama2-70b.Q6_K.gguf-split-b nous-hermes-llama2-70b.Q6_K.gguf
del nous-hermes-llama2-70b.Q6_K.gguf-split-a nous-hermes-llama2-70b.Q6_K.gguf-split-b

COPY /B nous-hermes-llama2-70b.Q8_0.gguf-split-a + nous-hermes-llama2-70b.Q8_0.gguf-split-b nous-hermes-llama2-70b.Q8_0.gguf
del nous-hermes-llama2-70b.Q8_0.gguf-split-a nous-hermes-llama2-70b.Q8_0.gguf-split-b
```

</details>
<!-- README_GGUF.md-provided-files end -->

<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command

Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.

For compatibility with older versions of llama.cpp, or for any third-party libraries or clients that haven't yet updated for GGUF, please use GGML files instead.

```
./main -t 10 -ngl 32 -m nous-hermes-llama2-70b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction:\n\n{prompt}\n\n### Response:"
```
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If offloading all layers to GPU, set `-t 1`.

Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change `-c 4096` to the desired sequence length for this model. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.

If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`

For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)

## How to run in `text-generation-webui`

Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).

## How to run from Python code

You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.

### How to load this model from Python using ctransformers

#### First install the package

```bash
# Base ctransformers with no GPU acceleration
pip install ctransformers>=0.2.24
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]>=0.2.24
# Or with ROCm GPU acceleration
CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems
CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
```

#### Simple example code to load one of these GGUF models

```python
from ctransformers import AutoModelForCausalLM

# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Nous-Hermes-Llama2-70B-GGUF", model_file="nous-hermes-llama2-70b.q4_K_M.gguf", model_type="llama", gpu_layers=50)

print(llm("AI is going to"))
```

## How to use with LangChain

Here's guides on using llama-cpp-python or ctransformers with LangChain:

* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)

<!-- README_GGUF.md-how-to-run end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute.

Thanks to the [chirper.ai](https://chirper.ai) team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

<!-- original-model-card start -->
# Original model card: NousResearch's Nous Hermes Llama2 70B


# Model Card: Nous-Hermes-Llama2-70b

Compute provided by PygmalionAI, thank you! Follow PygmalionAI on Twitter @pygmalion_ai.

## Model Description

Nous-Hermes-Llama2-70b is a state-of-the-art language model fine-tuned on over 300,000 instructions. This model was fine-tuned by Nous Research, with Teknium and Emozilla leading the fine tuning process and dataset curation, Pygmalion sponsoring the compute, and several other contributors.

This Hermes model uses the exact same dataset as Hermes on Llama-1. This is to ensure consistency between the old Hermes and new, for anyone who wanted to keep Hermes as similar to the old one, just more capable.

This model stands out for its long responses, lower hallucination rate, and absence of OpenAI censorship mechanisms in the synthetic training data. The fine-tuning process was performed with a 4096 sequence length on an 8x H100 80GB machine.

## Model Training

The model was trained almost entirely on synthetic GPT-4 outputs. Curating high quality GPT-4 datasets enables incredibly high quality in knowledge, task completion, and style.

This includes data from diverse sources such as GPTeacher, the general, roleplay v1&2, code instruct datasets, Nous Instruct & PDACTL (unpublished), and several others, detailed further below

## Collaborators
The model fine-tuning and the datasets were a collaboration of efforts and resources between Teknium, Karan4D, Emozilla, Huemin Art, and Pygmalion AI.

Special mention goes to @winglian for assisting in some of the training issues.

Huge shoutout and acknowledgement is deserved for all the dataset creators who generously share their datasets openly.

Among the contributors of datasets:
- GPTeacher was made available by Teknium
- Wizard LM by nlpxucan
- Nous Research Instruct Dataset was provided by Karan4D and HueminArt.
- GPT4-LLM and Unnatural Instructions were provided by Microsoft
- Airoboros dataset by jondurbin
- Camel-AI's domain expert datasets are from Camel-AI
- CodeAlpaca dataset by Sahil 2801.

If anyone was left out, please open a thread in the community tab.

## Prompt Format

The model follows the Alpaca prompt format:
```
### Instruction:
<prompt>

### Response:
<leave a newline blank for model to respond>

```

or

```
### Instruction:
<prompt>

### Input:
<additional context>

### Response:
<leave a newline blank for model to respond>

```

## Benchmarks:

GPT4All Suite:

```
hf-causal-experimental (pretrained=/home/data/axolotl/Nous-Hermes-Llama2-70b,dtype=float16,use_accelerate=True), limit: None, provide_description: False, num_fewshot: 0, batch_size: None
|    Task     |Version| Metric |Value |   |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge|      0|acc     |0.5734|±  |0.0145|
|             |       |acc_norm|0.6015|±  |0.0143|
|arc_easy     |      0|acc     |0.8422|±  |0.0075|
|             |       |acc_norm|0.8253|±  |0.0078|
|boolq        |      1|acc     |0.8422|±  |0.0064|
|hellaswag    |      0|acc     |0.6519|±  |0.0048|
|             |       |acc_norm|0.8363|±  |0.0037|
|openbookqa   |      0|acc     |0.3880|±  |0.0218|
|             |       |acc_norm|0.5000|±  |0.0224|
|piqa         |      0|acc     |0.8313|±  |0.0087|
|             |       |acc_norm|0.8351|±  |0.0087|
|winogrande   |      0|acc     |0.7751|±  |0.0117|
```


BigBench Suite:
```
hf-causal-experimental (pretrained=/home/data/axolotl/Nous-Hermes-Llama2-70b,dtype=float16,use_accelerate=True), limit: None, provide_description: False, num_fewshot: 0, batch_size: None
|                      Task                      |Version|       Metric        |Value |   |Stderr|
|------------------------------------------------|------:|---------------------|-----:|---|-----:|
|bigbench_causal_judgement                       |      0|multiple_choice_grade|0.6579|±  |0.0345|
|bigbench_date_understanding                     |      0|multiple_choice_grade|0.7344|±  |0.0230|
|bigbench_disambiguation_qa                      |      0|multiple_choice_grade|0.3023|±  |0.0286|
|bigbench_geometric_shapes                       |      0|multiple_choice_grade|0.2340|±  |0.0224|
|                                                |       |exact_str_match      |0.0000|±  |0.0000|
|bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|0.2760|±  |0.0200|
|bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|0.1871|±  |0.0148|
|bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|0.4467|±  |0.0288|
|bigbench_movie_recommendation                   |      0|multiple_choice_grade|0.3240|±  |0.0210|
|bigbench_navigate                               |      0|multiple_choice_grade|0.5000|±  |0.0158|
|bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|0.6605|±  |0.0106|
|bigbench_ruin_names                             |      0|multiple_choice_grade|0.4598|±  |0.0236|
|bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|0.2585|±  |0.0139|
|bigbench_snarks                                 |      0|multiple_choice_grade|0.6630|±  |0.0352|
|bigbench_sports_understanding                   |      0|multiple_choice_grade|0.7394|±  |0.0140|
|bigbench_temporal_sequences                     |      0|multiple_choice_grade|0.4440|±  |0.0157|
|bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|0.2168|±  |0.0117|
|bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|0.1531|±  |0.0086|
|bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|0.4467|±  |0.0288|
```

AGIEval:
```
hf-causal-experimental (pretrained=/home/data/axolotl/Nous-Hermes-Llama2-70b,dtype=float16,use_accelerate=True), limit: None, provide_description: False, num_fewshot: 0, batch_size: None
|             Task             |Version| Metric |Value |   |Stderr|
|------------------------------|------:|--------|-----:|---|-----:|
|agieval_aqua_rat              |      0|acc     |0.2480|±  |0.0272|
|                              |       |acc_norm|0.2362|±  |0.0267|
|agieval_logiqa_en             |      0|acc     |0.3917|±  |0.0191|
|                              |       |acc_norm|0.3932|±  |0.0192|
|agieval_lsat_ar               |      0|acc     |0.2217|±  |0.0275|
|                              |       |acc_norm|0.2000|±  |0.0264|
|agieval_lsat_lr               |      0|acc     |0.5765|±  |0.0219|
|                              |       |acc_norm|0.4922|±  |0.0222|
|agieval_lsat_rc               |      0|acc     |0.6914|±  |0.0282|
|                              |       |acc_norm|0.6022|±  |0.0299|
|agieval_sat_en                |      0|acc     |0.8641|±  |0.0239|
|                              |       |acc_norm|0.8204|±  |0.0268|
|agieval_sat_en_without_passage|      0|acc     |0.5291|±  |0.0349|
|                              |       |acc_norm|0.4709|±  |0.0349|
|agieval_sat_math              |      0|acc     |0.4136|±  |0.0333|
|                              |       |acc_norm|0.3455|±  |0.0321|
```

## Resources for Applied Use Cases:
Check out LM Studio for a nice chatgpt style interface here: https://lmstudio.ai/
For an example of a back and forth chatbot using huggingface transformers and discord, check out: https://github.com/teknium1/alpaca-discord
For an example of a roleplaying discord chatbot, check out this: https://github.com/teknium1/alpaca-roleplay-discordbot

## Future Plans
We plan to continue to iterate on both more high quality data, and new data filtering techniques to eliminate lower quality data going forward.

## Model Usage
The model is available for download on Hugging Face. It is suitable for a wide range of language tasks, from generating creative text to understanding and following complex instructions.

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)


## Training procedure


The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16

The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions

- PEFT 0.5.0.dev0

- PEFT 0.5.0.dev0

<!-- original-model-card end -->