TheBloke commited on
Commit
a7a3528
1 Parent(s): 42e00b5

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +428 -0
README.md ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Nondzu/Mistral-7B-Instruct-v0.2-code-ft
3
+ inference: false
4
+ license: cc-by-nc-nd-4.0
5
+ model_creator: Kamil
6
+ model_name: Mistral 7B Instruct V0.2 Code FT
7
+ model_type: mistral
8
+ prompt_template: '<|im_start|>system
9
+
10
+ {system_message}<|im_end|>
11
+
12
+ <|im_start|>user
13
+
14
+ {prompt}<|im_end|>
15
+
16
+ <|im_start|>assistant
17
+
18
+ '
19
+ quantized_by: TheBloke
20
+ ---
21
+ <!-- markdownlint-disable MD041 -->
22
+
23
+ <!-- header start -->
24
+ <!-- 200823 -->
25
+ <div style="width: auto; margin-left: auto; margin-right: auto">
26
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
27
+ </div>
28
+ <div style="display: flex; justify-content: space-between; width: 100%;">
29
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
30
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
31
+ </div>
32
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
33
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
34
+ </div>
35
+ </div>
36
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
37
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
38
+ <!-- header end -->
39
+
40
+ # Mistral 7B Instruct V0.2 Code FT - AWQ
41
+ - Model creator: [Kamil](https://huggingface.co/Nondzu)
42
+ - Original model: [Mistral 7B Instruct V0.2 Code FT](https://huggingface.co/Nondzu/Mistral-7B-Instruct-v0.2-code-ft)
43
+
44
+ <!-- description start -->
45
+ ## Description
46
+
47
+ This repo contains AWQ model files for [Kamil's Mistral 7B Instruct V0.2 Code FT](https://huggingface.co/Nondzu/Mistral-7B-Instruct-v0.2-code-ft).
48
+
49
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
50
+
51
+
52
+ ### About AWQ
53
+
54
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
55
+
56
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
57
+
58
+ It is supported by:
59
+
60
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
61
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
62
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
63
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
64
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
65
+
66
+ <!-- description end -->
67
+ <!-- repositories-available start -->
68
+ ## Repositories available
69
+
70
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-code-ft-AWQ)
71
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-code-ft-GPTQ)
72
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-code-ft-GGUF)
73
+ * [Kamil's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Nondzu/Mistral-7B-Instruct-v0.2-code-ft)
74
+ <!-- repositories-available end -->
75
+
76
+ <!-- prompt-template start -->
77
+ ## Prompt template: ChatML
78
+
79
+ ```
80
+ <|im_start|>system
81
+ {system_message}<|im_end|>
82
+ <|im_start|>user
83
+ {prompt}<|im_end|>
84
+ <|im_start|>assistant
85
+
86
+ ```
87
+
88
+ <!-- prompt-template end -->
89
+
90
+
91
+ <!-- README_AWQ.md-provided-files start -->
92
+ ## Provided files, and AWQ parameters
93
+
94
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
95
+
96
+ Models are released as sharded safetensors files.
97
+
98
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
99
+ | ------ | ---- | -- | ----------- | ------- | ---- |
100
+ | [main](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-code-ft-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.15 GB
101
+
102
+ <!-- README_AWQ.md-provided-files end -->
103
+
104
+ <!-- README_AWQ.md-text-generation-webui start -->
105
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
106
+
107
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
108
+
109
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
110
+
111
+ 1. Click the **Model tab**.
112
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Mistral-7B-Instruct-v0.2-code-ft-AWQ`.
113
+ 3. Click **Download**.
114
+ 4. The model will start downloading. Once it's finished it will say "Done".
115
+ 5. In the top left, click the refresh icon next to **Model**.
116
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Mistral-7B-Instruct-v0.2-code-ft-AWQ`
117
+ 7. Select **Loader: AutoAWQ**.
118
+ 8. Click Load, and the model will load and is now ready for use.
119
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
120
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
121
+ <!-- README_AWQ.md-text-generation-webui end -->
122
+
123
+ <!-- README_AWQ.md-use-from-vllm start -->
124
+ ## Multi-user inference server: vLLM
125
+
126
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
127
+
128
+ - Please ensure you are using vLLM version 0.2 or later.
129
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
130
+
131
+ For example:
132
+
133
+ ```shell
134
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Mistral-7B-Instruct-v0.2-code-ft-AWQ --quantization awq --dtype auto
135
+ ```
136
+
137
+ - When using vLLM from Python code, again set `quantization=awq`.
138
+
139
+ For example:
140
+
141
+ ```python
142
+ from vllm import LLM, SamplingParams
143
+
144
+ prompts = [
145
+ "Tell me about AI",
146
+ "Write a story about llamas",
147
+ "What is 291 - 150?",
148
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
149
+ ]
150
+ prompt_template=f'''<|im_start|>system
151
+ {system_message}<|im_end|>
152
+ <|im_start|>user
153
+ {prompt}<|im_end|>
154
+ <|im_start|>assistant
155
+ '''
156
+
157
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
158
+
159
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
160
+
161
+ llm = LLM(model="TheBloke/Mistral-7B-Instruct-v0.2-code-ft-AWQ", quantization="awq", dtype="auto")
162
+
163
+ outputs = llm.generate(prompts, sampling_params)
164
+
165
+ # Print the outputs.
166
+ for output in outputs:
167
+ prompt = output.prompt
168
+ generated_text = output.outputs[0].text
169
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
170
+ ```
171
+ <!-- README_AWQ.md-use-from-vllm start -->
172
+
173
+ <!-- README_AWQ.md-use-from-tgi start -->
174
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
175
+
176
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
177
+
178
+ Example Docker parameters:
179
+
180
+ ```shell
181
+ --model-id TheBloke/Mistral-7B-Instruct-v0.2-code-ft-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
182
+ ```
183
+
184
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
185
+
186
+ ```shell
187
+ pip3 install huggingface-hub
188
+ ```
189
+
190
+ ```python
191
+ from huggingface_hub import InferenceClient
192
+
193
+ endpoint_url = "https://your-endpoint-url-here"
194
+
195
+ prompt = "Tell me about AI"
196
+ prompt_template=f'''<|im_start|>system
197
+ {system_message}<|im_end|>
198
+ <|im_start|>user
199
+ {prompt}<|im_end|>
200
+ <|im_start|>assistant
201
+ '''
202
+
203
+ client = InferenceClient(endpoint_url)
204
+ response = client.text_generation(prompt,
205
+ max_new_tokens=128,
206
+ do_sample=True,
207
+ temperature=0.7,
208
+ top_p=0.95,
209
+ top_k=40,
210
+ repetition_penalty=1.1)
211
+
212
+ print(f"Model output: ", response)
213
+ ```
214
+ <!-- README_AWQ.md-use-from-tgi end -->
215
+
216
+ <!-- README_AWQ.md-use-from-python start -->
217
+ ## Inference from Python code using Transformers
218
+
219
+ ### Install the necessary packages
220
+
221
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
222
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
223
+
224
+ ```shell
225
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
226
+ ```
227
+
228
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
229
+
230
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
231
+
232
+ ```shell
233
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
234
+ ```
235
+
236
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
237
+
238
+ ```shell
239
+ pip3 uninstall -y autoawq
240
+ git clone https://github.com/casper-hansen/AutoAWQ
241
+ cd AutoAWQ
242
+ pip3 install .
243
+ ```
244
+
245
+ ### Transformers example code (requires Transformers 4.35.0 and later)
246
+
247
+ ```python
248
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
249
+
250
+ model_name_or_path = "TheBloke/Mistral-7B-Instruct-v0.2-code-ft-AWQ"
251
+
252
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
253
+ model = AutoModelForCausalLM.from_pretrained(
254
+ model_name_or_path,
255
+ low_cpu_mem_usage=True,
256
+ device_map="cuda:0"
257
+ )
258
+
259
+ # Using the text streamer to stream output one token at a time
260
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
261
+
262
+ prompt = "Tell me about AI"
263
+ prompt_template=f'''<|im_start|>system
264
+ {system_message}<|im_end|>
265
+ <|im_start|>user
266
+ {prompt}<|im_end|>
267
+ <|im_start|>assistant
268
+ '''
269
+
270
+ # Convert prompt to tokens
271
+ tokens = tokenizer(
272
+ prompt_template,
273
+ return_tensors='pt'
274
+ ).input_ids.cuda()
275
+
276
+ generation_params = {
277
+ "do_sample": True,
278
+ "temperature": 0.7,
279
+ "top_p": 0.95,
280
+ "top_k": 40,
281
+ "max_new_tokens": 512,
282
+ "repetition_penalty": 1.1
283
+ }
284
+
285
+ # Generate streamed output, visible one token at a time
286
+ generation_output = model.generate(
287
+ tokens,
288
+ streamer=streamer,
289
+ **generation_params
290
+ )
291
+
292
+ # Generation without a streamer, which will include the prompt in the output
293
+ generation_output = model.generate(
294
+ tokens,
295
+ **generation_params
296
+ )
297
+
298
+ # Get the tokens from the output, decode them, print them
299
+ token_output = generation_output[0]
300
+ text_output = tokenizer.decode(token_output)
301
+ print("model.generate output: ", text_output)
302
+
303
+ # Inference is also possible via Transformers' pipeline
304
+ from transformers import pipeline
305
+
306
+ pipe = pipeline(
307
+ "text-generation",
308
+ model=model,
309
+ tokenizer=tokenizer,
310
+ **generation_params
311
+ )
312
+
313
+ pipe_output = pipe(prompt_template)[0]['generated_text']
314
+ print("pipeline output: ", pipe_output)
315
+
316
+ ```
317
+ <!-- README_AWQ.md-use-from-python end -->
318
+
319
+ <!-- README_AWQ.md-compatibility start -->
320
+ ## Compatibility
321
+
322
+ The files provided are tested to work with:
323
+
324
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
325
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
326
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
327
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
328
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
329
+
330
+ <!-- README_AWQ.md-compatibility end -->
331
+
332
+ <!-- footer start -->
333
+ <!-- 200823 -->
334
+ ## Discord
335
+
336
+ For further support, and discussions on these models and AI in general, join us at:
337
+
338
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
339
+
340
+ ## Thanks, and how to contribute
341
+
342
+ Thanks to the [chirper.ai](https://chirper.ai) team!
343
+
344
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
345
+
346
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
347
+
348
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
349
+
350
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
351
+
352
+ * Patreon: https://patreon.com/TheBlokeAI
353
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
354
+
355
+ **Special thanks to**: Aemon Algiz.
356
+
357
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
358
+
359
+
360
+ Thank you to all my generous patrons and donaters!
361
+
362
+ And thank you again to a16z for their generous grant.
363
+
364
+ <!-- footer end -->
365
+
366
+ # Original model card: Kamil's Mistral 7B Instruct V0.2 Code FT
367
+
368
+
369
+ # Mistral-7B-Instruct-v0.2-code-ft
370
+
371
+ I'm thrilled to introduce the latest iteration of our model, Mistral-7B-Instruct-v0.2-code-ft. This updated version is designed to further enhance coding assistance and co-pilot functionalities. We're eager for developers and enthusiasts to try it out and provide feedback!
372
+
373
+ ## Additional Information
374
+
375
+ This version builds upon the previous Mistral-7B models, incorporating new datasets and features for a more refined experience.
376
+
377
+ ## Prompt template: ChatML
378
+ ```
379
+ <|im_start|>system
380
+ {system_message}<|im_end|>
381
+ <|im_start|>user
382
+ {prompt}<|im_end|>
383
+ <|im_start|>assistant
384
+ ```
385
+
386
+ ## Eval Plus Performance
387
+
388
+ For detailed performance metrics, visit Eval Plus page: [Mistral-7B-Instruct-v0.2-code-ft Eval Plus](https://github.com/evalplus/evalplus)
389
+
390
+ Score: 0.421
391
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63729f35acef705233c87909/VLtuWPh8m07bgU8BElpNv.png)
392
+
393
+ ## Dataset:
394
+ The model has been trained on a new dataset to improve its performance and versatility:
395
+ - path: ajibawa-2023/Code-74k-ShareGPT
396
+
397
+ type: sharegpt
398
+
399
+ conversation: chatml
400
+
401
+ Find more about the dataset here: [Code-74k-ShareGPT Dataset](https://huggingface.co/datasets/ajibawa-2023/Code-74k-ShareGPT)
402
+
403
+ ## Model Architecture
404
+
405
+ - Base Model: mistralai/Mistral-7B-Instruct-v0.2
406
+ - Tokenizer Type: LlamaTokenizer
407
+ - Model Type: MistralForCausalLM
408
+ - Is Mistral Derived Model: true
409
+ - Sequence Length: 16384 with sample packing
410
+
411
+ ## Enhanced Features
412
+
413
+ - Adapter: qlora
414
+ - Learning Rate: 0.0002 with cosine lr scheduler
415
+ - Optimizer: adamw_bnb_8bit
416
+ - Training Enhancements: bf16 training, gradient checkpointing, and flash attention
417
+
418
+
419
+ ## Download Information
420
+
421
+ You can download and explore this model through these links on Hugging Face.
422
+
423
+ ## Contributions and Feedback
424
+
425
+ We welcome contributions and feedback from the community. Please feel free to open issues or pull requests on repository.
426
+
427
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
428
+