TheBloke commited on
Commit
468a358
1 Parent(s): 9df67b2

New GGMLv3 format for breaking llama.cpp change May 19th commit 2d5db48

Browse files
Files changed (1) hide show
  1. README.md +11 -10
README.md CHANGED
@@ -14,7 +14,6 @@ language:
14
  - en
15
  library_name: transformers
16
  pipeline_tag: text-generation
17
- inference: false
18
  ---
19
 
20
  # Manticore 13B GGML
@@ -25,24 +24,26 @@ This repo is the result of quantising to 4-bit, 5-bit and 8-bit GGML for CPU (+C
25
 
26
  ## Repositories available
27
 
28
- * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Manticore-13B-GPTQ).
29
- * [4-bit, 5-bit 8-bit GGML models for llama.cpp CPU (+CUDA) inference](https://huggingface.co/TheBloke/Manticore-13B-GGML).
30
  * [OpenAccess AI Collective's original float16 HF format repo for GPU inference and further conversions](https://huggingface.co/openaccess-ai-collective/manticore-13b).
31
 
32
- ## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 12th 2023 - commit b9fd7ee)!
33
 
34
- llama.cpp recently made a breaking change to its quantisation methods.
35
 
36
  I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 12th or later (commit `b9fd7ee` or later) to use them.
37
 
 
 
38
  ## Provided files
39
  | Name | Quant method | Bits | Size | RAM required | Use case |
40
  | ---- | ---- | ---- | ---- | ---- | ----- |
41
- `manticore-13B.ggmlv2.q4_0.bin` | q4_0 | 4bit | 8.14GB | 10.5GB | 4-bit. |
42
- `manticore-13B.ggmlv2.q4_1.bin` | q4_1 | 4bit | 8.14GB | 10.5GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
43
- `manticore-13B.ggmlv2.q5_0.bin` | q5_0 | 5bit | 8.95GB | 11.0GB | 5-bit. Higher accuracy, higher resource usage and slower inference. |
44
- `manticore-13B.ggmlv2.q5_1.bin` | q5_1 | 5bit | 9.76GB | 12.25GB | 5-bit. Even higher accuracy, and higher resource usage and slower inference. |
45
- `manticore-13B.ggmlv2.q8_0.bin` | q8_0 | 8bit | 14.6GB | 17GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. |
46
 
47
  ## How to run in `llama.cpp`
48
 
 
14
  - en
15
  library_name: transformers
16
  pipeline_tag: text-generation
 
17
  ---
18
 
19
  # Manticore 13B GGML
 
24
 
25
  ## Repositories available
26
 
27
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/TheBloke/Manticore-13B-GPTQ).
28
+ * [4-bit, 5-bit 8-bit GGML models for llama.cpp CPU (+CUDA) inference](https://huggingface.co/TheBloke/TheBloke/Manticore-13B-GGML).
29
  * [OpenAccess AI Collective's original float16 HF format repo for GPU inference and further conversions](https://huggingface.co/openaccess-ai-collective/manticore-13b).
30
 
31
+ ## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)!
32
 
33
+ llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508
34
 
35
  I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 12th or later (commit `b9fd7ee` or later) to use them.
36
 
37
+ For files compatible with the previous version of llama.cpp, please see branch `previous_llama_ggmlv2`.
38
+
39
  ## Provided files
40
  | Name | Quant method | Bits | Size | RAM required | Use case |
41
  | ---- | ---- | ---- | ---- | ---- | ----- |
42
+ `manticore-13B.ggmlv3.q4_0.bin` | q4_0 | 4bit | 8.14GB | 10.5GB | 4-bit. |
43
+ `manticore-13B.ggmlv3.q4_1.bin` | q4_0 | 4bit | 8.14GB | 10.5GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
44
+ `manticore-13B.ggmlv3.q5_0.bin` | q5_0 | 5bit | 8.95GB | 11.0GB | 5-bit. Higher accuracy, higher resource usage and slower inference. |
45
+ `manticore-13B.ggmlv3.q5_1.bin` | q5_1 | 5bit | 9.76GB | 12.25GB | 5-bit. Even higher accuracy, and higher resource usage and slower inference. |
46
+ `manticore-13B.ggmlv3.q8_0.bin` | q8_0 | 8bit | 14.6GB | 17GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. |
47
 
48
  ## How to run in `llama.cpp`
49