TheBloke commited on
Commit
6ee214f
1 Parent(s): 528c11b

Initial GGML model commit

Browse files
Files changed (1) hide show
  1. README.md +498 -0
README.md ADDED
@@ -0,0 +1,498 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - rombodawg/LosslessMegaCodeTrainingV2_1m_Evol_Uncensored
4
+ - OpenAssistant/oasst1
5
+ - ehartford/dolphin
6
+ - argilla/databricks-dolly-15k-curated-multilingual
7
+ inference: false
8
+ language:
9
+ - en
10
+ library_name: transformers
11
+ license: llama2
12
+ model_creator: OpenAssistant
13
+ model_link: https://huggingface.co/OpenAssistant/llama2-70b-oasst-sft-v10
14
+ model_name: Llama2 70B SFT v10
15
+ model_type: llama
16
+ pipeline_tag: text-generation
17
+ quantized_by: TheBloke
18
+ tags:
19
+ - sft
20
+ ---
21
+
22
+ <!-- header start -->
23
+ <!-- 200823 -->
24
+ <div style="width: auto; margin-left: auto; margin-right: auto">
25
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
26
+ </div>
27
+ <div style="display: flex; justify-content: space-between; width: 100%;">
28
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
29
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
30
+ </div>
31
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
32
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
33
+ </div>
34
+ </div>
35
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
36
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
37
+ <!-- header end -->
38
+
39
+ # Llama2 70B SFT v10 - GGML
40
+ - Model creator: [OpenAssistant](https://huggingface.co/OpenAssistant)
41
+ - Original model: [Llama2 70B SFT v10](https://huggingface.co/OpenAssistant/llama2-70b-oasst-sft-v10)
42
+
43
+ ## Description
44
+
45
+ This repo contains GGML format model files for [OpenAssistant's Llama2 70B SFT v10](https://huggingface.co/OpenAssistant/llama2-70b-oasst-sft-v10).
46
+
47
+ ### Important note regarding GGML files.
48
+
49
+ The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.
50
+
51
+ ### About GGML
52
+
53
+ GPU acceleration is now available for Llama 2 70B GGML files, with both CUDA (NVidia) and Metal (macOS). The following clients/libraries are known to work with these files, including with GPU acceleration:
54
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp), commit `e76d630` and later.
55
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI.
56
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), version 1.37 and later. A powerful GGML web UI, especially good for story telling.
57
+ * [LM Studio](https://lmstudio.ai/), a fully featured local GUI with GPU acceleration for both Windows and macOS. Use 0.1.11 or later for macOS GPU acceleration with 70B models.
58
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), version 0.1.77 and later. A Python library with LangChain support, and OpenAI-compatible API server.
59
+ * [ctransformers](https://github.com/marella/ctransformers), version 0.2.15 and later. A Python library with LangChain support, and OpenAI-compatible API server.
60
+
61
+ ## Repositories available
62
+
63
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-GPTQ)
64
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-GGUF)
65
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-GGML)
66
+ * [OpenAssistant's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenAssistant/llama2-70b-oasst-sft-v10)
67
+
68
+ ## Prompt template: ChatML
69
+
70
+ ```
71
+ <|im_start|>system
72
+ {system_message}<|im_end|>
73
+ <|im_start|>user
74
+ {prompt}<|im_end|>
75
+ <|im_start|>assistant
76
+ ```
77
+
78
+ <!-- compatibility_ggml start -->
79
+ ## Compatibility
80
+
81
+ ### Works with llama.cpp [commit `e76d630`](https://github.com/ggerganov/llama.cpp/commit/e76d630df17e235e6b9ef416c45996765d2e36fb) until August 21st, 2023
82
+
83
+ Will not work with `llama.cpp` after commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa).
84
+
85
+ For compatibility with latest llama.cpp, please use GGUF files instead.
86
+
87
+ Or one of the other tools and libraries listed above.
88
+
89
+ To use in llama.cpp, you must add `-gqa 8` argument.
90
+
91
+ For other UIs and libraries, please check the docs.
92
+
93
+ ## Explanation of the new k-quant methods
94
+ <details>
95
+ <summary>Click to see details</summary>
96
+
97
+ The new methods available are:
98
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
99
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
100
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
101
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
102
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
103
+ * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
104
+
105
+ Refer to the Provided Files table below to see what files use which methods, and how.
106
+ </details>
107
+ <!-- compatibility_ggml end -->
108
+
109
+ ## Provided files
110
+
111
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
112
+ | ---- | ---- | ---- | ---- | ---- | ----- |
113
+ | [llama2-70b-oasst-sft-v10.ggmlv3.Q2_K.bin](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-GGML/blob/main/llama2-70b-oasst-sft-v10.ggmlv3.Q2_K.bin) | Q2_K | 2 | 28.96 GB| 31.46 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
114
+ | [llama2-70b-oasst-sft-v10.ggmlv3.Q3_K_S.bin](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-GGML/blob/main/llama2-70b-oasst-sft-v10.ggmlv3.Q3_K_S.bin) | Q3_K_S | 3 | 30.09 GB| 32.59 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
115
+ | [llama2-70b-oasst-sft-v10.ggmlv3.Q3_K_M.bin](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-GGML/blob/main/llama2-70b-oasst-sft-v10.ggmlv3.Q3_K_M.bin) | Q3_K_M | 3 | 33.39 GB| 35.89 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
116
+ | [llama2-70b-oasst-sft-v10.ggmlv3.Q3_K_L.bin](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-GGML/blob/main/llama2-70b-oasst-sft-v10.ggmlv3.Q3_K_L.bin) | Q3_K_L | 3 | 36.49 GB| 38.99 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
117
+ | [llama2-70b-oasst-sft-v10.ggmlv3.Q4_0.bin](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-GGML/blob/main/llama2-70b-oasst-sft-v10.ggmlv3.Q4_0.bin) | Q4_0 | 4 | 38.80 GB| 41.30 GB | Original quant method, 4-bit. |
118
+ | [llama2-70b-oasst-sft-v10.ggmlv3.Q4_K_S.bin](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-GGML/blob/main/llama2-70b-oasst-sft-v10.ggmlv3.Q4_K_S.bin) | Q4_K_S | 4 | 39.18 GB| 41.68 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
119
+ | [llama2-70b-oasst-sft-v10.ggmlv3.Q4_K_M.bin](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-GGML/blob/main/llama2-70b-oasst-sft-v10.ggmlv3.Q4_K_M.bin) | Q4_K_M | 4 | 41.69 GB| 44.19 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
120
+ | [llama2-70b-oasst-sft-v10.ggmlv3.Q4_1.bin](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-GGML/blob/main/llama2-70b-oasst-sft-v10.ggmlv3.Q4_1.bin) | Q4_1 | 4 | 43.12 GB| 45.62 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
121
+ | [llama2-70b-oasst-sft-v10.ggmlv3.Q5_0.bin](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-GGML/blob/main/llama2-70b-oasst-sft-v10.ggmlv3.Q5_0.bin) | Q5_0 | 5 | 47.43 GB| 49.93 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
122
+ | [llama2-70b-oasst-sft-v10.ggmlv3.Q5_K_S.bin](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-GGML/blob/main/llama2-70b-oasst-sft-v10.ggmlv3.Q5_K_S.bin) | Q5_K_S | 5 | 47.74 GB| 50.24 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
123
+ | [llama2-70b-oasst-sft-v10.ggmlv3.Q5_K_M.bin](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-GGML/blob/main/llama2-70b-oasst-sft-v10.ggmlv3.Q5_K_M.bin) | Q5_K_M | 5 | 49.03 GB| 51.53 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
124
+
125
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
126
+
127
+ ## How to run in `llama.cpp`
128
+
129
+ Make sure you are using `llama.cpp` from commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa) or earlier.
130
+
131
+ For compatibility with latest llama.cpp, please use GGUF files instead.
132
+
133
+ I use the following command line; adjust for your tastes and needs:
134
+
135
+ ```
136
+ ./main -t 10 -ngl 40 -gqa 8 -m llama2-70b-oasst-sft-v10.ggmlv3.q4_K_M.bin --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\nYou are a story writing assistant.<|im_end|>\n<|im_start|>user\nWrite a story about llamas<|im_end|>\n<|im_start|>assistant"
137
+ ```
138
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If you are fully offloading the model to GPU, use `-t 1`
139
+
140
+ Change `-ngl 40` to the number of GPU layers you have VRAM for. Use `-ngl 100` to offload all layers to VRAM - if you have a 48GB card, or 2 x 24GB, or similar. Otherwise you can partially offload as many as you have VRAM for, on one or more GPUs.
141
+
142
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
143
+
144
+ Remember the `-gqa 8` argument, required for Llama 70B models.
145
+
146
+ Change `-c 4096` to the desired sequence length for this model. For models that use RoPE, add `--rope-freq-base 10000 --rope-freq-scale 0.5` for doubled context, or `--rope-freq-base 10000 --rope-freq-scale 0.25` for 4x context.
147
+
148
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
149
+
150
+ ## How to run in `text-generation-webui`
151
+
152
+ Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
153
+
154
+ <!-- footer start -->
155
+ <!-- 200823 -->
156
+ ## Discord
157
+
158
+ For further support, and discussions on these models and AI in general, join us at:
159
+
160
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
161
+
162
+ ## Thanks, and how to contribute.
163
+
164
+ Thanks to the [chirper.ai](https://chirper.ai) team!
165
+
166
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
167
+
168
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
169
+
170
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
171
+
172
+ * Patreon: https://patreon.com/TheBlokeAI
173
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
174
+
175
+ **Special thanks to**: Aemon Algiz.
176
+
177
+ **Patreon special mentions**: Kacper Wikieł, knownsqashed, Leonard Tan, Asp the Wyvern, Daniel P. Andersen, Luke Pendergrass, Stanislav Ovsiannikov, RoA, Dave, Ai Maven, Kalila, Will Dee, Imad Khwaja, Nitin Borwankar, Joseph William Delisle, Tony Hughes, Cory Kujawski, Rishabh Srivastava, Russ Johnson, Stephen Murray, Lone Striker, Johann-Peter Hartmann, Elle, J, Deep Realms, SuperWojo, Raven Klaugh, Sebastain Graf, ReadyPlayerEmma, Alps Aficionado, Mano Prime, Derek Yates, Gabriel Puliatti, Mesiah Bishop, Magnesian, Sean Connelly, biorpg, Iucharbius, Olakabola, Fen Risland, Space Cruiser, theTransient, Illia Dulskyi, Thomas Belote, Spencer Kim, Pieter, John Detwiler, Fred von Graf, Michael Davis, Swaroop Kallakuri, subjectnull, Clay Pascal, Subspace Studios, Chris Smitley, Enrico Ros, usrbinkat, Steven Wood, alfie_i, David Ziegler, Willem Michiel, Matthew Berman, Andrey, Pyrater, Jeffrey Morgan, vamX, LangChain4j, Luke @flexchar, Trenton Dambrowitz, Pierre Kircher, Alex, Sam, James Bentley, Edmond Seymore, Eugene Pentland, Pedro Madruga, Rainer Wilmers, Dan Guido, Nathan LeClaire, Spiking Neurons AB, Talal Aujan, zynix, Artur Olbinski, Michael Levine, 阿明, K, John Villwock, Nikolai Manek, Femi Adebogun, senxiiz, Deo Leter, NimbleBox.ai, Viktor Bowallius, Geoffrey Montalvo, Mandus, Ajan Kanaga, ya boyyy, Jonathan Leane, webtim, Brandon Frisco, danny, Alexandros Triantafyllidis, Gabriel Tamborski, Randy H, terasurfer, Vadim, Junyu Yang, Vitor Caleffi, Chadd, transmissions 11
178
+
179
+
180
+ Thank you to all my generous patrons and donaters!
181
+
182
+ And thank you again to a16z for their generous grant.
183
+
184
+ <!-- footer end -->
185
+
186
+ # Original model card: OpenAssistant's Llama2 70B SFT v10
187
+
188
+ # Open-Assistant Llama2 70B SFT v10
189
+
190
+ This model is an Open-Assistant fine-tuning of Meta's [Llama2 70B](https://huggingface.co/meta-llama/Llama-2-70b) LLM.
191
+ It was fine-tuned in two stages, first on a mix of synthetic instrunctions and coding tasks and then in a "polishing" stage
192
+ on the best human demonstrations collected at [open-assistant.io](https://open-assistant.io/) up to July 23, 2023 (see [Configuration Details](#configuration-details) below).
193
+
194
+ ## Model Details
195
+
196
+ - **Finetuned from:** [meta-llama/Llama-2-70b](https://huggingface.co/meta-llama/Llama-2-70b) via [epfLLM/Megatron-LLM](https://github.com/epfLLM/Megatron-LLM)
197
+ - **Model type:** Causal decoder-only transformer language model
198
+ - **Language:** English (and limited capabilities in German, Spanish, French, Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish)
199
+ - **Weights & Biases training logs:** [Stage 1](https://wandb.ai/open-assistant/public-sft/runs/run45_oasst_pre10_llama2_70b) (1 epoch pretrain-mix, 12k steps), [Stage 2](https://wandb.ai/open-assistant/public-sft/runs/run46_oasst_sft10_llama2_70b) (3 epochs oasst top-1, 519 steps)
200
+ - **Demo:** [Continuations for 250 random prompts (TGI, 4bit nf4 quantization)](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-sft%2F2023-08-22_OpenAssistant_llama2-70b-oasst-sft-v10_sampling_noprefix2_nf4.json%0A)
201
+ - **Evaluation** [FastEval-OpenAssistant Overview](https://tju01.github.io/FastEval-OpenAssistant/) (using [FastEval](https://github.com/FastEval/FastEval) & [vLLM](https://github.com/vllm-project/vllm))
202
+ - **License:** [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt)
203
+ - **Contact:** [Open-Assistant Discord](https://ykilcher.com/open-assistant-discord)
204
+
205
+
206
+ ## Prompting / Prompt Template
207
+
208
+ Due to public demand (see [survey](https://twitter.com/erhartford/status/1682403597525430272)) we changed the prompt-template for this model from custom prompter/assistant tokens to OpenAI's [chatml](https://github.com/openai/openai-python/blob/main/chatml.md) standard prompt format.
209
+ We hope that this leads to greater compatibility with chat inference/frontend applications.
210
+
211
+ Prompt dialogue template:
212
+
213
+ ```
214
+ """
215
+ <|im_start|>system
216
+ {system_message}<|im_end|>
217
+ <|im_start|>user
218
+ {prompt}<|im_end|>
219
+ <|im_start|>assistant
220
+ """
221
+ ```
222
+
223
+ The model input can contain multiple conversation turns between user and assistant, e.g.
224
+ ```
225
+ <|im_start|>user
226
+ {prompt 1}<|im_end|>
227
+ <|im_start|>assistant
228
+ {reply 1}<|im_end|>
229
+ <|im_start|>user
230
+ {prompt 2}<|im_end|>
231
+ <|im_start|>assistant
232
+ (...)
233
+ ```
234
+
235
+ The model was partly trained with orca system messages.
236
+ For inference we recommend to use the official [Llama2 system message](https://github.com/facebookresearch/llama/blob/ea9f33d6d3ea8ed7d560d270986407fd6c2e52b7/example_chat_completion.py#L57-L61):
237
+ ```
238
+ <|im_start|>system
239
+ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
240
+
241
+ If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
242
+ <|im_end|>
243
+ ```
244
+
245
+ ### Credits & Special Thanks
246
+
247
+ - Thanks to [Meta AI](https://ai.meta.com/) for training and releasing the Llama2 model.
248
+ - Distributed training support was provided by EPFL's [Machine Learning and Optimization Laboratory](https://www.epfl.ch/labs/mlo/), and [Natural Language Processing Lab](https://nlp.epfl.ch/).
249
+ - The open-source [epfLLM/Megatron-LLM](https://github.com/epfLLM/Megatron-LLM) trainer was used for fine-tuning.
250
+ - [rombodawg](https://huggingface.co/rombodawg) curated the [LosslessMegaCodeTrainingV2_1m_Evol_Uncensored](https://huggingface.co/datasets/rombodawg/LosslessMegaCodeTrainingV2_1m_Evol_Uncensored) dataset.
251
+ - [ehartford](https://huggingface.co/ehartford) generated and published the [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin) and the [ehartford/oa_leet10k](https://huggingface.co/datasets/ehartford/oa_leet10k) datasets.
252
+ - [Argilla](https://huggingface.co/argilla) curated and published the [argilla/databricks-dolly-15k-curated-multilingual](https://huggingface.co/datasets/argilla/databricks-dolly-15k-curated-multilingual) dataset.
253
+ - [shahules786](https://github.com/shahules786) de-duped and filtered the Dolphin dataset with a cluster-center approach and generated the orca-best (ocra-chat) dataset.
254
+ - [andreaskoepf](https://github.com/andreaskoepf/) prepared & orchestrated the training.
255
+
256
+ We want to especially thank everyone who contributed in the crowed-sourced Open-Assistant dataset creation on https://open-assistant.io/ - without you this project would not have been possible.
257
+
258
+ ## Ethical Considerations and Limitations
259
+
260
+ Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios.
261
+ For these reasons, as with all LLMs, the potential outputs of llama2-70b-oasst-sft-v10 cannot be predicted
262
+ in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses
263
+ to user prompts. Therefore, before deploying any applications of llama2-70b-oasst-sft-v10, developers should
264
+ perform safety testing and tuning tailored to their specific applications of the model.
265
+
266
+ Please see Meta's [Responsible Use Guide](https://ai.meta.com/llama/responsible-use-guide/).
267
+
268
+ ## Note regarding inference with TGI
269
+
270
+ During evaluation we noticed that this 70B model produced extremely poor outputs when loaded it was loaded in 16 bit precision sharded in [TGI](https://github.com/huggingface/text-generation-inference).
271
+ In contrast the model could be evaluated without problem using [vLLM](https://github.com/vllm-project/vllm).
272
+ The model also worked decently well when loaded with TGI on a single GPPU nf4 quantized via [TimDettmers/bitsandbytes](https://github.com/TimDettmers/bitsandbytes).
273
+ Will will get it touch with the TGI authors to find out why sharded 16-bit inference doesn't work as expected.
274
+
275
+ ## Configuration Details
276
+
277
+ The "pretokenizer" utility used to tokenize the datamix is part of the Open-Assistant github repository and can be found here: [model/pretokenizer](https://github.com/LAION-AI/Open-Assistant/tree/main/model/pretokenizer).
278
+
279
+
280
+ ### Stage 1 Pretokenizer Configuration
281
+
282
+ Entries of the dataset with assistant replies shorter than 25 tokens were excluded from training.
283
+
284
+ ```
285
+ oasst_pre10_min25:
286
+ datasets:
287
+ - megacode2:
288
+ fraction: 0.5
289
+ val_split: 0.01
290
+ max_val_set: 1000
291
+ - orca-chat:
292
+ val_split: 0.01
293
+ max_val_set: 1000
294
+ - dolly15k_multilingual:
295
+ val_split: 0.05
296
+ max_val_set: 300
297
+ - oa_leet10k:
298
+ val_split: 0.05
299
+ max_val_set: 250
300
+ output_dir: "output/oasst_pre10_min25"
301
+ filename_prefix: "oasst_pre10"
302
+ min_assistant_tokens: 25
303
+ ```
304
+
305
+ Stage 1 dataset statistics:
306
+ ```
307
+ # Stats for output/oasst_pre10_min25_llama2
308
+
309
+ ## Stats for 'Subset of InstructionDataset (megacode2)' (466364 samples (50.0%))
310
+ -----------------
311
+ Accepted: 398223/466364 (85.4%)
312
+ Accepted tokens: 167676873
313
+ Skipped: 68141 (14.6%)
314
+ Min tokens per sample: 36
315
+ Max tokens per sample: 11810
316
+ Avg tokens per sample: 421.063
317
+ -----------------
318
+
319
+ ## Stats for 'Subset of OrcaChat (orca-chat)' (325616 samples (100.0%))
320
+ -----------------
321
+ Accepted: 325616/325616 (100.0%)
322
+ Accepted tokens: 178307574
323
+ Skipped: 0 (0.0%)
324
+ Min tokens per sample: 105
325
+ Max tokens per sample: 10408
326
+ Avg tokens per sample: 547.601
327
+ -----------------
328
+
329
+ ## Stats for 'Subset of Dolly15kMultilingual' (57020 samples (100.0%))
330
+ -----------------
331
+ Accepted: 47494/57020 (83.3%)
332
+ Accepted tokens: 13883177
333
+ Skipped: 9526 (16.7%)
334
+ Min tokens per sample: 34
335
+ Max tokens per sample: 9172
336
+ Avg tokens per sample: 292.314
337
+ -----------------
338
+
339
+ ## Stats for 'Subset of InstructionDataset (oa_leet10k)' (22236 samples (100.0%))
340
+ -----------------
341
+ Accepted: 22236/22236 (100.0%)
342
+ Accepted tokens: 15905296
343
+ Skipped: 0 (0.0%)
344
+ Min tokens per sample: 168
345
+ Max tokens per sample: 10588
346
+ Avg tokens per sample: 715.295
347
+ -----------------
348
+
349
+ ## Stats for 'total' (871236 samples (100.0%))
350
+ -----------------
351
+ Accepted: 793569/871236 (91.1%)
352
+ Accepted tokens: 375772920
353
+ Skipped: 77667 (8.9%)
354
+ Min tokens per sample: 34
355
+ Max tokens per sample: 11810
356
+ Avg tokens per sample: 473.523
357
+ -----------------
358
+ ```
359
+
360
+
361
+ ### Stage 2 Pretokenizer Configuration
362
+
363
+ ```
364
+ oasst_top1:
365
+ datasets:
366
+ - oasst_export:
367
+ lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
368
+ input_file_path: 2023-07-23_oasst_ready.tar.gz
369
+ top_k: 1
370
+ val_split: 0.05
371
+ output_dir: "output/oasst_top1_2023-07-23"
372
+ filename_prefix: "oasst_top1"
373
+ ```
374
+
375
+ Stage 2 dataset statistics:
376
+
377
+ ```
378
+ # Stats for output/oasst_top1_2023-07-23_llama2
379
+
380
+ ## Stats for 'ListDataset' (11441 samples (100.0%))
381
+ -----------------
382
+ Accepted: 11441/11441 (100.0%)
383
+ Accepted tokens: 5315368
384
+ Skipped: 0 (0.0%)
385
+ Min tokens per sample: 20
386
+ Max tokens per sample: 5407
387
+ Avg tokens per sample: 464.58945896337735
388
+ -----------------
389
+
390
+ ## Stats for 'total' (11441 samples (100.0%))
391
+ -----------------
392
+ Accepted: 11441/11441 (100.0%)
393
+ Accepted tokens: 5315368
394
+ Skipped: 0 (0.0%)
395
+ Min tokens per sample: 20
396
+ Max tokens per sample: 5407
397
+ Avg tokens per sample: 464.58945896337735
398
+ -----------------
399
+ ```
400
+
401
+
402
+ ### Megatron Fine-Tuning Arguments for Stage 1 (Instruction Tuning):
403
+ ```
404
+ --tensor_model_parallel_size 8
405
+ --pipeline_model_parallel_size 4
406
+ --load ./checkpoints/llama2-70b-tp8-pp4
407
+ --save ./checkpoints/llama2-70b-tp8-pp4-oasst_pre10
408
+ --tensorboard_dir ./checkpoints/llama2-70b-tp8-pp4-oasst_pre10/logging
409
+ --data_path ./data/oasst_pre10_min25_llama2/oasst_sft10-train
410
+ --model_name llama2
411
+ --tokenizer_type SentencePieceTokenizer
412
+ --bf16
413
+ --global_batch_size 64
414
+ --micro_batch_size 2
415
+ --vocab_file=./llama2/Llama-2-7b/tokenizer.model
416
+ --use_rms_norm
417
+ --glu_activation swiglu
418
+ --no_tie_embed_logits
419
+ --vocab_extra_ids_list "\"<|im_start|>,<|im_end|>\""
420
+ --layernorm_epsilon 1e-5
421
+ --use_flash_attn
422
+ --no_bias_gelu_fusion
423
+ --seq_length 4096
424
+ --max_position_embeddings 4096
425
+ --log_interval 1
426
+ --save_interval 500
427
+ --eval_interval 50
428
+ --eval_iters 10
429
+ --hidden_dropout 0.0
430
+ --position_embedding_type rotary
431
+ --no_bias_dropout_fusion
432
+ --use_checkpoint_args
433
+ --train_iters 12000
434
+ --attention_dropout 0.0
435
+ --adam_beta1 0.9
436
+ --adam_beta2 0.95
437
+ --adam_eps 1e-12
438
+ --lr_decay_style cosine
439
+ --lr_warmup_iters 100
440
+ --lr 1e-5
441
+ --min_lr 1e-6
442
+ --weight_decay 0.000001
443
+ --sequence_parallel
444
+ --recompute_granularity selective
445
+ --log_timers_to_tensorboard
446
+ --rope_scaling_factor 1.0
447
+ --wandb_logger
448
+ ```
449
+
450
+ ### Megatron Fine-Tuning Arguments for Stage 2 (OASST Polishing, LIMA Dropout):
451
+ ```
452
+ --tensor_model_parallel_size 8
453
+ --pipeline_model_parallel_size 4
454
+ --load ./checkpoints/llama2-70b-tp8-pp4-oasst_pre10
455
+ --save ./checkpoints/llama2-70b-tp8-pp4-oasst_sft10
456
+ --tensorboard_dir ./checkpoints/llama2-70b-tp8-pp4-oasst_sft10/logging
457
+ --data_path ./data/oasst_top1_2023-07-23_llama2/oasst_top1-train
458
+ --model_name llama2
459
+ --tokenizer_type SentencePieceTokenizer
460
+ --bf16
461
+ --global_batch_size 64
462
+ --micro_batch_size 2
463
+ --vocab_file=./llama2/Llama-2-7b/tokenizer.model
464
+ --use_rms_norm
465
+ --glu_activation swiglu
466
+ --no_tie_embed_logits
467
+ --vocab_extra_ids_list "\"<|im_start|>,<|im_end|>\""
468
+ --layernorm_epsilon 1e-5
469
+ --use_flash_attn
470
+ --no_bias_gelu_fusion
471
+ --seq_length 4096
472
+ --max_position_embeddings 4096
473
+ --log_interval 1
474
+ --save_interval 346
475
+ --eval_interval 50
476
+ --eval_iters 10
477
+ --hidden_dropout 0.25
478
+ --lima_dropout
479
+ --position_embedding_type rotary
480
+ --no_bias_dropout_fusion
481
+ --use_checkpoint_args
482
+ --train_iters 519
483
+ --attention_dropout 0.0
484
+ --adam_beta1 0.9
485
+ --adam_beta2 0.95
486
+ --adam_eps 1e-12
487
+ --lr_decay_style cosine
488
+ --lr_warmup_iters 100
489
+ --lr 1e-5
490
+ --min_lr 1e-6
491
+ --weight_decay 0.000001
492
+ --sequence_parallel
493
+ --recompute_granularity selective
494
+ --log_timers_to_tensorboard
495
+ --rope_scaling_factor 1.0
496
+ --finetune
497
+ --wandb_logger
498
+ ```