File size: 22,825 Bytes
cc4ce2c
3675a35
 
 
 
 
 
cc4ce2c
 
 
 
 
3675a35
 
cc4ce2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
---
language:
- en
license: llama2
library_name: transformers
tags:
- sft
datasets:
- rombodawg/LosslessMegaCodeTrainingV2_1m_Evol_Uncensored
- OpenAssistant/oasst1
- shahules786/orca-best
- argilla/databricks-dolly-15k-curated-multilingual
model_name: Llama2 70B SFT v10
base_model: OpenAssistant/llama2-70b-oasst-sft-v10
inference: false
model_creator: OpenAssistant
model_type: llama
pipeline_tag: text-generation
prompt_template: '<|im_start|>system

  {system_message}<|im_end|>

  <|im_start|>user

  {prompt}<|im_end|>

  <|im_start|>assistant

  '
quantized_by: TheBloke
---

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# Llama2 70B SFT v10 - AWQ
- Model creator: [OpenAssistant](https://huggingface.co/OpenAssistant)
- Original model: [Llama2 70B SFT v10](https://huggingface.co/OpenAssistant/llama2-70b-oasst-sft-v10)

<!-- description start -->
## Description

This repo contains AWQ model files for [OpenAssistant's Llama2 70B SFT v10](https://huggingface.co/OpenAssistant/llama2-70b-oasst-sft-v10).


### About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.

It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
<!-- description end -->
<!-- repositories-available start -->
## Repositories available

* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-GGUF)
* [OpenAssistant's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenAssistant/llama2-70b-oasst-sft-v10)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: ChatML

```
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

```

<!-- prompt-template end -->


<!-- README_AWQ.md-provided-files start -->
## Provided files and AWQ parameters

For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.

Models are released as sharded safetensors files.

| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
| ------ | ---- | -- | ----------- | ------- | ---- |
| [main](https://huggingface.co/TheBloke/Llama2-70B-OASST-SFT-v10-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.61 GB

<!-- README_AWQ.md-provided-files end -->

<!-- README_AWQ.md-use-from-vllm start -->
## Serving this model from vLLM

Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).

- When using vLLM as a server, pass the `--quantization awq` parameter, for example:

```shell
python3 python -m vllm.entrypoints.api_server --model TheBloke/Llama2-70B-OASST-SFT-v10-AWQ --quantization awq
```

When using vLLM from Python code, pass the `quantization=awq` parameter, for example:

```python
from vllm import LLM, SamplingParams

prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="TheBloke/Llama2-70B-OASST-SFT-v10-AWQ", quantization="awq")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
<!-- README_AWQ.md-use-from-vllm start -->

<!-- README_AWQ.md-use-from-python start -->
## How to use this AWQ model from Python code

### Install the necessary packages

Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later

```shell
pip3 install autoawq
```

If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:

```shell
pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .
```

### You can then try the following example code

```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer

model_name_or_path = "TheBloke/Llama2-70B-OASST-SFT-v10-AWQ"

# Load model
model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
                                          trust_remote_code=False, safetensors=True)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)

prompt = "Tell me about AI"
prompt_template=f'''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

'''

print("\n\n*** Generate:")

tokens = tokenizer(
    prompt_template,
    return_tensors='pt'
).input_ids.cuda()

# Generate output
generation_output = model.generate(
    tokens,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    max_new_tokens=512
)

print("Output: ", tokenizer.decode(generation_output[0]))

# Inference can also be done using transformers' pipeline
from transformers import pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])
```
<!-- README_AWQ.md-use-from-python end -->

<!-- README_AWQ.md-compatibility start -->
## Compatibility

The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).

[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
<!-- README_AWQ.md-compatibility end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

# Original model card: OpenAssistant's Llama2 70B SFT v10

# Open-Assistant Llama2 70B SFT v10

This model is an Open-Assistant fine-tuning of Meta's [Llama2 70B](https://huggingface.co/meta-llama/Llama-2-70b) LLM. 
It was fine-tuned in two stages, first on a mix of synthetic instrunctions and coding tasks and then in a "polishing" stage
on the best human demonstrations collected at [open-assistant.io](https://open-assistant.io/) up to July 23, 2023 (see [Configuration Details](#configuration-details) below).

## Model Details

- **Finetuned from:** [meta-llama/Llama-2-70b](https://huggingface.co/meta-llama/Llama-2-70b) via [epfLLM/Megatron-LLM](https://github.com/epfLLM/Megatron-LLM)
- **Model type:** Causal decoder-only transformer language model
- **Language:** English (and limited capabilities in German, Spanish, French, Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish)
- **Weights & Biases training logs:** [Stage 1](https://wandb.ai/open-assistant/public-sft/runs/run45_oasst_pre10_llama2_70b) (1 epoch pretrain-mix, 12k steps), [Stage 2](https://wandb.ai/open-assistant/public-sft/runs/run46_oasst_sft10_llama2_70b) (3 epochs oasst top-1, 519 steps)
- **Demo:** [Continuations for 250 random prompts (TGI, 4bit nf4 quantization)](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-sft%2F2023-08-22_OpenAssistant_llama2-70b-oasst-sft-v10_sampling_noprefix2_nf4.json%0A)
- **Evaluation** [FastEval-OpenAssistant Overview](https://tju01.github.io/FastEval-OpenAssistant/) (using [FastEval](https://github.com/FastEval/FastEval) & [vLLM](https://github.com/vllm-project/vllm)) 
- **License:** [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt)
- **Contact:** [Open-Assistant Discord](https://ykilcher.com/open-assistant-discord)


## Prompting / Prompt Template

Due to public demand (see [survey](https://twitter.com/erhartford/status/1682403597525430272)) we changed the prompt-template for this model from custom prompter/assistant tokens to OpenAI's [chatml](https://github.com/openai/openai-python/blob/main/chatml.md) standard prompt format.
We hope that this leads to greater compatibility with chat inference/frontend applications.

Prompt dialogue template:

```
"""
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
"""
```

The model input can contain multiple conversation turns between user and assistant, e.g.
```
<|im_start|>user
{prompt 1}<|im_end|>
<|im_start|>assistant
{reply 1}<|im_end|>
<|im_start|>user
{prompt 2}<|im_end|>
<|im_start|>assistant
(...)
```

The model was partly trained with orca system messages.  
For inference we recommend to use the official [Llama2 system message](https://github.com/facebookresearch/llama/blob/ea9f33d6d3ea8ed7d560d270986407fd6c2e52b7/example_chat_completion.py#L57-L61):
```
<|im_start|>system
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.

If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<|im_end|>
```

### Credits & Special Thanks

- Thanks to [Meta AI](https://ai.meta.com/) for training and releasing the Llama2 model.
- Distributed training support was provided by EPFL's [Machine Learning and Optimization Laboratory](https://www.epfl.ch/labs/mlo/), and [Natural Language Processing Lab](https://nlp.epfl.ch/).
- The open-source [epfLLM/Megatron-LLM](https://github.com/epfLLM/Megatron-LLM) trainer was used for fine-tuning.
- [rombodawg](https://huggingface.co/rombodawg) curated the [LosslessMegaCodeTrainingV2_1m_Evol_Uncensored](https://huggingface.co/datasets/rombodawg/LosslessMegaCodeTrainingV2_1m_Evol_Uncensored) dataset.
- [ehartford](https://huggingface.co/ehartford) generated and published the [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin) and the [ehartford/oa_leet10k](https://huggingface.co/datasets/ehartford/oa_leet10k) datasets.
- [Argilla](https://huggingface.co/argilla) curated and published the [argilla/databricks-dolly-15k-curated-multilingual](https://huggingface.co/datasets/argilla/databricks-dolly-15k-curated-multilingual) dataset.
- [shahules786](https://github.com/shahules786) de-duped and filtered the Dolphin dataset with a cluster-center approach and generated the orca-best (ocra-chat) dataset.
- [andreaskoepf](https://github.com/andreaskoepf/) prepared & orchestrated the training.

We want to especially thank everyone who contributed in the crowed-sourced Open-Assistant dataset creation on https://open-assistant.io/ - without you this project would not have been possible.

## Ethical Considerations and Limitations

Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. 
For these reasons, as with all LLMs, the potential outputs of llama2-70b-oasst-sft-v10 cannot be predicted
in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses
to user prompts. Therefore, before deploying any applications of llama2-70b-oasst-sft-v10, developers should
perform safety testing and tuning tailored to their specific applications of the model.

Please see Meta's [Responsible Use Guide](https://ai.meta.com/llama/responsible-use-guide/).

## Note regarding inference with TGI

During evaluation we noticed that this 70B model produced extremely poor outputs when loaded it was loaded in 16 bit precision sharded in [TGI](https://github.com/huggingface/text-generation-inference).
In contrast the model could be evaluated without problem using [vLLM](https://github.com/vllm-project/vllm).
The model also worked decently well when loaded with TGI on a single GPPU nf4 quantized via [TimDettmers/bitsandbytes](https://github.com/TimDettmers/bitsandbytes).
Will will get it touch with the TGI authors to find out why sharded 16-bit inference doesn't work as expected.

## Configuration Details

The "pretokenizer" utility used to tokenize the datamix is part of the Open-Assistant github repository and can be found here: [model/pretokenizer](https://github.com/LAION-AI/Open-Assistant/tree/main/model/pretokenizer).


### Stage 1 Pretokenizer Configuration

Entries of the dataset with assistant replies shorter than 25 tokens were excluded from training.

```
oasst_pre10_min25:
  datasets:
    - megacode2:
        fraction: 0.5
        val_split: 0.01
        max_val_set: 1000
    - orca-chat:
        val_split: 0.01
        max_val_set: 1000
    - dolly15k_multilingual:
        val_split: 0.05
        max_val_set: 300
    - oa_leet10k:
        val_split: 0.05
        max_val_set: 250
  output_dir: "output/oasst_pre10_min25"
  filename_prefix: "oasst_pre10"
  min_assistant_tokens: 25
```

Stage 1 dataset statistics:
```
# Stats for output/oasst_pre10_min25_llama2

## Stats for 'Subset of InstructionDataset (megacode2)' (466364 samples (50.0%))
-----------------
  Accepted: 398223/466364 (85.4%)
  Accepted tokens: 167676873
  Skipped: 68141 (14.6%)
  Min tokens per sample: 36
  Max tokens per sample: 11810
  Avg tokens per sample: 421.063
-----------------

## Stats for 'Subset of OrcaChat (orca-chat)' (325616 samples (100.0%))
-----------------
  Accepted: 325616/325616 (100.0%)
  Accepted tokens: 178307574
  Skipped: 0 (0.0%)
  Min tokens per sample: 105
  Max tokens per sample: 10408
  Avg tokens per sample: 547.601
-----------------

## Stats for 'Subset of Dolly15kMultilingual' (57020 samples (100.0%))
-----------------
  Accepted: 47494/57020 (83.3%)
  Accepted tokens: 13883177
  Skipped: 9526 (16.7%)
  Min tokens per sample: 34
  Max tokens per sample: 9172
  Avg tokens per sample: 292.314
-----------------

## Stats for 'Subset of InstructionDataset (oa_leet10k)' (22236 samples (100.0%))
-----------------
  Accepted: 22236/22236 (100.0%)
  Accepted tokens: 15905296
  Skipped: 0 (0.0%)
  Min tokens per sample: 168
  Max tokens per sample: 10588
  Avg tokens per sample: 715.295
-----------------

## Stats for 'total' (871236 samples (100.0%))
-----------------
  Accepted: 793569/871236 (91.1%)
  Accepted tokens: 375772920
  Skipped: 77667 (8.9%)
  Min tokens per sample: 34
  Max tokens per sample: 11810
  Avg tokens per sample: 473.523
-----------------
```


### Stage 2 Pretokenizer Configuration

```
oasst_top1:
  datasets:
    - oasst_export:
        lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
        input_file_path: 2023-07-23_oasst_ready.tar.gz
        top_k: 1
        val_split: 0.05
  output_dir: "output/oasst_top1_2023-07-23"
  filename_prefix: "oasst_top1"
```

Stage 2 dataset statistics:

```
# Stats for output/oasst_top1_2023-07-23_llama2

## Stats for 'ListDataset' (11441 samples (100.0%))
-----------------
  Accepted: 11441/11441 (100.0%)
  Accepted tokens: 5315368
  Skipped: 0 (0.0%)
  Min tokens per sample: 20
  Max tokens per sample: 5407
  Avg tokens per sample: 464.58945896337735
-----------------

## Stats for 'total' (11441 samples (100.0%))
-----------------
  Accepted: 11441/11441 (100.0%)
  Accepted tokens: 5315368
  Skipped: 0 (0.0%)
  Min tokens per sample: 20
  Max tokens per sample: 5407
  Avg tokens per sample: 464.58945896337735
-----------------
```


### Megatron Fine-Tuning Arguments for Stage 1 (Instruction Tuning):
```
--tensor_model_parallel_size 8
--pipeline_model_parallel_size 4
--load ./checkpoints/llama2-70b-tp8-pp4
--save ./checkpoints/llama2-70b-tp8-pp4-oasst_pre10
--tensorboard_dir ./checkpoints/llama2-70b-tp8-pp4-oasst_pre10/logging
--data_path ./data/oasst_pre10_min25_llama2/oasst_sft10-train
--model_name llama2
--tokenizer_type SentencePieceTokenizer
--bf16
--global_batch_size 64
--micro_batch_size 2
--vocab_file=./llama2/Llama-2-7b/tokenizer.model
--use_rms_norm
--glu_activation swiglu
--no_tie_embed_logits
--vocab_extra_ids_list "\"<|im_start|>,<|im_end|>\""
--layernorm_epsilon 1e-5
--use_flash_attn
--no_bias_gelu_fusion
--seq_length 4096
--max_position_embeddings 4096
--log_interval 1
--save_interval 500
--eval_interval 50
--eval_iters 10
--hidden_dropout 0.0
--position_embedding_type rotary
--no_bias_dropout_fusion
--use_checkpoint_args
--train_iters 12000
--attention_dropout 0.0
--adam_beta1 0.9
--adam_beta2 0.95
--adam_eps 1e-12
--lr_decay_style cosine
--lr_warmup_iters 100
--lr 1e-5
--min_lr 1e-6
--weight_decay 0.000001
--sequence_parallel
--recompute_granularity selective
--log_timers_to_tensorboard
--rope_scaling_factor 1.0
--wandb_logger
```

### Megatron Fine-Tuning Arguments for Stage 2 (OASST Polishing, LIMA Dropout):
```
--tensor_model_parallel_size 8
--pipeline_model_parallel_size 4
--load ./checkpoints/llama2-70b-tp8-pp4-oasst_pre10
--save ./checkpoints/llama2-70b-tp8-pp4-oasst_sft10
--tensorboard_dir ./checkpoints/llama2-70b-tp8-pp4-oasst_sft10/logging
--data_path ./data/oasst_top1_2023-07-23_llama2/oasst_top1-train
--model_name llama2
--tokenizer_type SentencePieceTokenizer
--bf16
--global_batch_size 64
--micro_batch_size 2
--vocab_file=./llama2/Llama-2-7b/tokenizer.model
--use_rms_norm
--glu_activation swiglu
--no_tie_embed_logits
--vocab_extra_ids_list "\"<|im_start|>,<|im_end|>\""
--layernorm_epsilon 1e-5
--use_flash_attn
--no_bias_gelu_fusion
--seq_length 4096
--max_position_embeddings 4096
--log_interval 1
--save_interval 346
--eval_interval 50
--eval_iters 10
--hidden_dropout 0.25
--lima_dropout
--position_embedding_type rotary
--no_bias_dropout_fusion
--use_checkpoint_args
--train_iters 519
--attention_dropout 0.0
--adam_beta1 0.9
--adam_beta2 0.95
--adam_eps 1e-12
--lr_decay_style cosine
--lr_warmup_iters 100
--lr 1e-5
--min_lr 1e-6
--weight_decay 0.000001
--sequence_parallel
--recompute_granularity selective
--log_timers_to_tensorboard
--rope_scaling_factor 1.0
--finetune
--wandb_logger
```