TheBloke commited on
Commit
6e7f112
1 Parent(s): dcb6f36

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -17
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  datasets:
3
  - OpenAssistant/oasst1
4
  inference: false
@@ -7,11 +8,13 @@ language:
7
  - de
8
  - es
9
  - fr
10
- license: llama2
11
  model_creator: Jordan Clive
12
- model_link: https://huggingface.co/jordiclive/Llama-2-70b-oasst-1-200
13
  model_name: Open-Assistant Llama2 70B SFT OASST
14
  model_type: llama
 
 
 
15
  quantized_by: TheBloke
16
  tags:
17
  - sft
@@ -49,9 +52,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
49
  <!-- repositories-available start -->
50
  ## Repositories available
51
 
 
52
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GPTQ)
53
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GGUF)
54
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GGML)
55
  * [Jordan Clive's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jordiclive/Llama-2-70b-oasst-1-200)
56
  <!-- repositories-available end -->
57
 
@@ -64,7 +67,15 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
64
  ```
65
 
66
  <!-- prompt-template end -->
 
 
 
 
67
 
 
 
 
 
68
  <!-- README_GPTQ.md-provided-files start -->
69
  ## Provided files and GPTQ parameters
70
 
@@ -89,22 +100,22 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
89
 
90
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
91
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
92
- | [main](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
93
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
94
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
95
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
96
  | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.78 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
97
- | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
98
 
99
  <!-- README_GPTQ.md-provided-files end -->
100
 
101
  <!-- README_GPTQ.md-download-from-branches start -->
102
  ## How to download from branches
103
 
104
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Llama-2-70B-OASST-1-200-GPTQ:gptq-4bit-32g-actorder_True`
105
  - With Git, you can clone a branch with:
106
  ```
107
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GPTQ
108
  ```
109
  - In Python Transformers code, the branch is the `revision` parameter; see below.
110
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -117,7 +128,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
117
 
118
  1. Click the **Model tab**.
119
  2. Under **Download custom model or LoRA**, enter `TheBloke/Llama-2-70B-OASST-1-200-GPTQ`.
120
- - To download from a specific branch, enter for example `TheBloke/Llama-2-70B-OASST-1-200-GPTQ:gptq-4bit-32g-actorder_True`
121
  - see Provided Files above for the list of branches for each option.
122
  3. Click **Download**.
123
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -165,10 +176,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
165
 
166
  model_name_or_path = "TheBloke/Llama-2-70B-OASST-1-200-GPTQ"
167
  # To use a different branch, change revision
168
- # For example: revision="gptq-4bit-32g-actorder_True"
169
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
170
- torch_dtype=torch.float16,
171
  device_map="auto",
 
172
  revision="main")
173
 
174
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
@@ -181,7 +192,7 @@ prompt_template=f'''<|prompter|>{prompt}<|endoftext|><|assistant|>
181
  print("\n\n*** Generate:")
182
 
183
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
184
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
185
  print(tokenizer.decode(output[0]))
186
 
187
  # Inference can also be done using transformers' pipeline
@@ -192,9 +203,11 @@ pipe = pipeline(
192
  model=model,
193
  tokenizer=tokenizer,
194
  max_new_tokens=512,
 
195
  temperature=0.7,
196
  top_p=0.95,
197
- repetition_penalty=1.15
 
198
  )
199
 
200
  print(pipe(prompt_template)[0]['generated_text'])
@@ -219,10 +232,12 @@ For further support, and discussions on these models and AI in general, join us
219
 
220
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
221
 
222
- ## Thanks, and how to contribute.
223
 
224
  Thanks to the [chirper.ai](https://chirper.ai) team!
225
 
 
 
226
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
227
 
228
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -234,7 +249,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
234
 
235
  **Special thanks to**: Aemon Algiz.
236
 
237
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
238
 
239
 
240
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/jordiclive/Llama-2-70b-oasst-1-200
3
  datasets:
4
  - OpenAssistant/oasst1
5
  inference: false
 
8
  - de
9
  - es
10
  - fr
11
+ license: apache-2.0
12
  model_creator: Jordan Clive
 
13
  model_name: Open-Assistant Llama2 70B SFT OASST
14
  model_type: llama
15
+ prompt_template: '<|prompter|>{prompt}<|endoftext|><|assistant|>
16
+
17
+ '
18
  quantized_by: TheBloke
19
  tags:
20
  - sft
 
52
  <!-- repositories-available start -->
53
  ## Repositories available
54
 
55
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-AWQ)
56
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GPTQ)
57
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GGUF)
 
58
  * [Jordan Clive's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jordiclive/Llama-2-70b-oasst-1-200)
59
  <!-- repositories-available end -->
60
 
 
67
  ```
68
 
69
  <!-- prompt-template end -->
70
+ <!-- licensing start -->
71
+ ## Licensing
72
+
73
+ The creator of the source model has listed its license as `apache-2.0`, and this quantization has therefore used that same license.
74
 
75
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
76
+
77
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Jordan Clive's Open-Assistant Llama2 70B SFT OASST](https://huggingface.co/jordiclive/Llama-2-70b-oasst-1-200).
78
+ <!-- licensing end -->
79
  <!-- README_GPTQ.md-provided-files start -->
80
  ## Provided files and GPTQ parameters
81
 
 
100
 
101
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
102
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
103
+ | [main](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
104
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
105
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
106
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
107
  | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.78 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
108
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
109
 
110
  <!-- README_GPTQ.md-provided-files end -->
111
 
112
  <!-- README_GPTQ.md-download-from-branches start -->
113
  ## How to download from branches
114
 
115
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Llama-2-70B-OASST-1-200-GPTQ:main`
116
  - With Git, you can clone a branch with:
117
  ```
118
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GPTQ
119
  ```
120
  - In Python Transformers code, the branch is the `revision` parameter; see below.
121
  <!-- README_GPTQ.md-download-from-branches end -->
 
128
 
129
  1. Click the **Model tab**.
130
  2. Under **Download custom model or LoRA**, enter `TheBloke/Llama-2-70B-OASST-1-200-GPTQ`.
131
+ - To download from a specific branch, enter for example `TheBloke/Llama-2-70B-OASST-1-200-GPTQ:main`
132
  - see Provided Files above for the list of branches for each option.
133
  3. Click **Download**.
134
  4. The model will start downloading. Once it's finished it will say "Done".
 
176
 
177
  model_name_or_path = "TheBloke/Llama-2-70B-OASST-1-200-GPTQ"
178
  # To use a different branch, change revision
179
+ # For example: revision="main"
180
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
181
  device_map="auto",
182
+ trust_remote_code=False,
183
  revision="main")
184
 
185
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
 
192
  print("\n\n*** Generate:")
193
 
194
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
195
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
196
  print(tokenizer.decode(output[0]))
197
 
198
  # Inference can also be done using transformers' pipeline
 
203
  model=model,
204
  tokenizer=tokenizer,
205
  max_new_tokens=512,
206
+ do_sample=True,
207
  temperature=0.7,
208
  top_p=0.95,
209
+ top_k=40,
210
+ repetition_penalty=1.1
211
  )
212
 
213
  print(pipe(prompt_template)[0]['generated_text'])
 
232
 
233
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
234
 
235
+ ## Thanks, and how to contribute
236
 
237
  Thanks to the [chirper.ai](https://chirper.ai) team!
238
 
239
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
240
+
241
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
242
 
243
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
249
 
250
  **Special thanks to**: Aemon Algiz.
251
 
252
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
253
 
254
 
255
  Thank you to all my generous patrons and donaters!