File size: 23,627 Bytes
34e901c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad17c0a
7c99e57
ad17c0a
 
 
 
 
 
 
 
 
 
d7c8ef0
 
 
 
 
7c99e57
 
 
 
 
34e901c
 
 
ad17c0a
34e901c
 
 
 
6b34cbe
a740fe5
6b34cbe
a77a245
 
6b34cbe
 
 
 
 
 
a740fe5
6b34cbe
a77a245
 
34e901c
 
 
 
 
 
 
 
 
 
f68a2b0
 
 
 
ce33f4d
 
 
 
34e901c
 
 
 
 
 
 
 
 
 
ad17c0a
34e901c
ad17c0a
34e901c
 
 
ad17c0a
ce33f4d
ad17c0a
 
0f75c61
ad17c0a
 
 
 
 
 
 
7c99e57
ad17c0a
 
7c99e57
ad17c0a
 
 
7c99e57
ad17c0a
7c99e57
34e901c
286b640
34e901c
 
 
 
ad17c0a
ce33f4d
 
 
 
 
 
34e901c
 
 
 
 
ce33f4d
 
 
34e901c
ce33f4d
7c99e57
 
 
 
 
ce33f4d
 
34e901c
 
 
 
 
 
 
72c60db
34e901c
 
 
 
 
 
ce33f4d
 
34e901c
ce33f4d
34e901c
 
 
 
 
 
 
 
 
 
ce33f4d
34e901c
ce33f4d
34e901c
 
 
 
 
80b2bea
 
 
 
 
 
34e901c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad17c0a
 
 
ce33f4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34e901c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
---
inference: false
language:
- en
license: other
model_type: llama
pipeline_tag: text-generation
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
---

<!-- header start -->
<div style="width: 100%;">
    <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<!-- header end -->

# Meta's Llama 2 70B Chat GPTQ

These files are GPTQ model files for [Meta's Llama 2 70B Chat](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf).

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

Many thanks to William Beauchamp from [Chai](https://chai-research.com/) for providing the hardware for these quantisations!

## ExLlama support for 70B is here!

As of [this commit](https://github.com/turboderp/exllama/commit/b3aea521859b83cfd889c4c00c05a323313b7fee), ExLlama has support for Llama 2 70B models.

Please make sure you update ExLlama to the latest version. If you are a text-generation-webui one-click user, you must first uninstall the ExLlama wheel, then clone ExLlama into `text-generation-webui/repositories`; full instructions are below.

Now that we have ExLlama, that is the recommended loader to use for these models, as performance should be better than with AutoGPTQ and GPTQ-for-LLaMa, and you will be able to use the higher accuracy models, eg 128g + Act-Order.

Reminder: ExLlama does not support 3-bit models, so if you wish to try those quants, you will need to use AutoGPTQ or GPTQ-for-LLaMa.

## AutoGPTQ and GPTQ-for-LLaMa requires latest version of Transformers

If you plan to use any of these quants with AutoGPTQ or GPTQ-for-LLaMa, your Transformers needs to be be using the latest Github code.

If you're using text-generation-webui and have updated to the latest version, this is done for you automatically.

If not, you can update it manually with:

```
pip3 install git+https://github.com/huggingface/transformers
```

## Repositories available

* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-70B-chat-GPTQ)
* [Original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Llama-2-70B-chat-fp16)

## Prompt template: Llama-2-Chat

```
[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>

{prompt} [/INST]
```

To continue a conversation:

```
[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>

{prompt} [/INST] {model_reply} [INST] {prompt} [/INST]
```

## Provided files

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch.  See below for instructions on fetching from different branches.

| Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
| ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
| main | 4 | 128 | False | 35.33 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
| gptq-4bit-32g-actorder_True | 4 | 32 | True | 40.66 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
| gptq-4bit-64g-actorder_True | 4 | 64 | True | 37.99 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
| gptq-4bit-128g-actorder_True | 4 | 128 | True | 36.65 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
| gptq-3bit--1g-actorder_True | 3 | None | True | 26.78 GB | False | AutoGPTQ | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
| gptq-3bit-128g-actorder_False | 3 | 128 | False | 28.03 GB | False | AutoGPTQ | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
| gptq-3bit-128g-actorder_True | 3 | 128 | True | 28.03 GB | False | AutoGPTQ | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
| gptq-3bit-64g-actorder_True | 3 | 64 | True | 29.30 GB | False | AutoGPTQ | 3-bit, with group size 64g and act-order. Highest quality 3-bit option. Poor AutoGPTQ CUDA speed. |

## How to download from branches

- In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Llama-2-70B-chat-GPTQ:gptq-4bit-32g-actorder_True`
- With Git, you can clone a branch with:
```
git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Llama-2-70B-chat-GPTQ`
```
- In Python Transformers code, the branch is the `revision` parameter; see below.

### How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).

Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui), which includes support for Llama 2 models.

It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.

### Use ExLlama (4-bit models only) - recommended option if you have enough VRAM for 4-bit

ExLlama has now been updated to support Llama 2 70B, but you will need to update ExLlama to the latest version.

By default text-generation-webui installs a pre-compiled wheel for ExLlama. Until text-generation-webui updates to reflect the ExLlama changes - which hopefully won't be long - you must uninstall that and then update ExLlama in the `text-generation-webui/repositories` directory.  ExLlama will then compile its kernel on model load.

Note that this requires that your system is capable of compiling CUDA extensions, which may be an issue on Windows.

Instructions for Linux One Click Installer:

1. Change directory into the text-generation-webui main folder: `cd /path/to/text-generation-webui`
2. Activate the conda env of text-generation-webui:
```
source "installer_files/conda/etc/profile.d/conda.sh"
conda activate installer_files/env
```
3. Run: `pip3 uninstall exllama`
4. Run: `cd repositories/exllama` followed by `git pull` to update exllama.
6. Now launch text-generation-webui and follow the instructions below for downloading and running the model. ExLlama should build its kernel when the model first loads.

### Downloading and running the model in text-generation-webui

1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/Llama-2-70B-chat-GPTQ`.
  - To download from a specific branch, enter for example `TheBloke/Llama-2-70B-chat-GPTQ:gptq-4bit-32g-actorder_True`
  - see Provided Files above for the list of branches for each option.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done"
5. Set Loader to ExLlama if you plan to use a 4-bit file, or else choose AutoGPTQ or GPTQ-for-LLaMA.
  - If you use AutoGPTQ, make sure "No inject fused attention" is ticked
6. In the top left, click the refresh icon next to **Model**.
7. In the **Model** dropdown, choose the model you just downloaded: `TheBloke/Llama-2-70B-chat-GPTQ`
8. The model will automatically load, and is now ready for use!
9. Then click **Save settings for this model** followed by **Reload the Model** in the top right to make sure your settings are persisted.
10. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!

## How to use this GPTQ model from Python code

First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:

```
GITHUB_ACTIONS=true pip3 install auto-gptq
```

You also need the latest Transformers code from Github:

```
pip3 install git+https://github.com/huggingface/transformers
```

You must set `inject_fused_attention=False` as shown below.

Then try the following example code:

```python
from transformers import AutoTokenizer, pipeline, logging
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig

model_name_or_path = "TheBloke/Llama-2-70B-chat-GPTQ"
model_basename = "gptq_model-4bit--1g"

use_triton = False

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
        model_basename=model_basename,
        inject_fused_attention=False, # Required for Llama 2 70B model at this time.
        use_safetensors=True,
        trust_remote_code=False,
        device="cuda:0",
        use_triton=use_triton,
        quantize_config=None)

"""
To download from a specific branch, use the revision parameter, as in this example:

model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
        revision="gptq-4bit-32g-actorder_True",
        model_basename=model_basename,
        inject_fused_attention=False, # Required for Llama 2 70B model at this time.
        use_safetensors=True,
        trust_remote_code=False,
        device="cuda:0",
        quantize_config=None)
"""

prompt = "Tell me about AI"
system_message = "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."
prompt_template=f'''[INST] <<SYS>>
{system_message}
<</SYS>>

{prompt} [/INST]
'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
logging.set_verbosity(logging.CRITICAL)

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    temperature=0.7,
    top_p=0.95,
    repetition_penalty=1.15
)

print(pipe(prompt_template)[0]['generated_text'])
```

## Compatibility

The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.

ExLlama is now compatible with Llama 2 70B models, as of [this commit](https://github.com/turboderp/exllama/commit/b3aea521859b83cfd889c4c00c05a323313b7fee).

 Please see the Provided Files table above for per-file compatibility.

<!-- footer start -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute.

Thanks to the [chirper.ai](https://chirper.ai) team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Luke from CarbonQuill, Aemon Algiz.

**Patreon special mentions**: Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang.

Thank you to all my generous patrons and donaters!

<!-- footer end -->

# Original model card: Meta's Llama 2 70B Chat

# **Llama 2**
Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 70B fine-tuned model, optimized for dialogue use cases and converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom.

## Model Details
*Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.*

Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM.

**Model Developers** Meta

**Variations** Llama 2 comes in a range of parameter sizes — 7B, 13B, and 70B — as well as pretrained and fine-tuned variations.

**Input** Models input text only.

**Output** Models generate text only.

**Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety.


||Training Data|Params|Content Length|GQA|Tokens|LR|
|---|---|---|---|---|---|---|
|Llama 2|*A new mix of publicly available online data*|7B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>|
|Llama 2|*A new mix of publicly available online data*|13B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>|
|Llama 2|*A new mix of publicly available online data*|70B|4k|&#10004;|2.0T|1.5 x 10<sup>-4</sup>|

*Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models -  70B -- use Grouped-Query Attention (GQA) for improved inference scalability.

**Model Dates** Llama 2 was trained between January 2023 and July 2023.

**Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.

**License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)

## Intended Use
**Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.

**Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2.

## Hardware and Software
**Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.

**Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program.

||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)|
|---|---|---|---|
|Llama 2 7B|184320|400|31.22|
|Llama 2 13B|368640|400|62.44|
|Llama 2 70B|1720320|400|291.42|
|Total|3311616||539.00|

**CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.

## Training Data
**Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.

**Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023.

## Evaluation Results

In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library.

|Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval|
|---|---|---|---|---|---|---|---|---|---|
|Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9|
|Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9|
|Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7|
|Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6|
|Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3|
|Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1|
|Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**|

**Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1.

|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama 1|7B|27.42|23.00|
|Llama 1|13B|41.74|23.08|
|Llama 1|33B|44.19|22.57|
|Llama 1|65B|48.71|21.77|
|Llama 2|7B|33.29|**21.25**|
|Llama 2|13B|41.86|26.10|
|Llama 2|70B|**50.18**|24.60|

**Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better).


|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama-2-Chat|7B|57.04|**0.00**|
|Llama-2-Chat|13B|62.18|**0.00**|
|Llama-2-Chat|70B|**64.14**|0.01|

**Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above.

## Ethical Considerations and Limitations
Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model.

Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide)

## Reporting Issues
Please report any software “bug,” or other problems with the models through one of the following means:
- Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama)
- Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)
- Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)

## Llama Model Index
|Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf|
|---|---|---|---|---|
|7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)|
|13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)|
|70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)|