TheBloke commited on
Commit
4ae81b6
1 Parent(s): 4ecd895

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +388 -0
README.md ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: https://huggingface.co/lilloukas/GPlatty-30B
3
+ inference: false
4
+ language:
5
+ - en
6
+ license: other
7
+ metrics:
8
+ - MMLU
9
+ - ARC
10
+ - HellaSwag
11
+ - TruthfulQA
12
+ model_creator: lilloukas
13
+ model_name: Gplatty 30B
14
+ model_type: llama
15
+ prompt_template: 'Below is an instruction that describes a task. Write a response
16
+ that appropriately completes the request.
17
+
18
+
19
+ ### Instruction:
20
+
21
+ {prompt}
22
+
23
+
24
+ ### Response:
25
+
26
+ '
27
+ quantized_by: TheBloke
28
+ tags:
29
+ - llama
30
+ ---
31
+
32
+ <!-- header start -->
33
+ <!-- 200823 -->
34
+ <div style="width: auto; margin-left: auto; margin-right: auto">
35
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
36
+ </div>
37
+ <div style="display: flex; justify-content: space-between; width: 100%;">
38
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
39
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
40
+ </div>
41
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
42
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
43
+ </div>
44
+ </div>
45
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
46
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
47
+ <!-- header end -->
48
+
49
+ # Gplatty 30B - GGUF
50
+ - Model creator: [lilloukas](https://huggingface.co/lilloukas)
51
+ - Original model: [Gplatty 30B](https://huggingface.co/lilloukas/GPlatty-30B)
52
+
53
+ <!-- description start -->
54
+ ## Description
55
+
56
+ This repo contains GGUF format model files for [Lilloukas' GPlatty 30B](https://huggingface.co/lilloukas/GPlatty-30B).
57
+
58
+ <!-- description end -->
59
+ <!-- README_GGUF.md-about-gguf start -->
60
+ ### About GGUF
61
+
62
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
63
+
64
+ Here is an incomplate list of clients and libraries that are known to support GGUF:
65
+
66
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
67
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
68
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
69
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
70
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
71
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
72
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
73
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
74
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
75
+
76
+ <!-- README_GGUF.md-about-gguf end -->
77
+ <!-- repositories-available start -->
78
+ ## Repositories available
79
+
80
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/GPlatty-30B-AWQ)
81
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/GPlatty-30B-GPTQ)
82
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/GPlatty-30B-GGUF)
83
+ * [lilloukas's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lilloukas/GPlatty-30B)
84
+ <!-- repositories-available end -->
85
+
86
+ <!-- prompt-template start -->
87
+ ## Prompt template: Alpaca
88
+
89
+ ```
90
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
91
+
92
+ ### Instruction:
93
+ {prompt}
94
+
95
+ ### Response:
96
+
97
+ ```
98
+
99
+ <!-- prompt-template end -->
100
+ <!-- licensing start -->
101
+ ## Licensing
102
+
103
+ The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
104
+
105
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
106
+
107
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Lilloukas' GPlatty 30B](https://huggingface.co/lilloukas/GPlatty-30B).
108
+ <!-- licensing end -->
109
+ <!-- compatibility_gguf start -->
110
+ ## Compatibility
111
+
112
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
113
+
114
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
115
+
116
+ ## Explanation of quantisation methods
117
+ <details>
118
+ <summary>Click to see details</summary>
119
+
120
+ The new methods available are:
121
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
122
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
123
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
124
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
125
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
126
+
127
+ Refer to the Provided Files table below to see what files use which methods, and how.
128
+ </details>
129
+ <!-- compatibility_gguf end -->
130
+
131
+ <!-- README_GGUF.md-provided-files start -->
132
+ ## Provided files
133
+
134
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
135
+ | ---- | ---- | ---- | ---- | ---- | ----- |
136
+ | [gplatty-30b.Q2_K.gguf](https://huggingface.co/TheBloke/GPlatty-30B-GGUF/blob/main/gplatty-30b.Q2_K.gguf) | Q2_K | 2 | 13.50 GB| 16.00 GB | smallest, significant quality loss - not recommended for most purposes |
137
+ | [gplatty-30b.Q3_K_S.gguf](https://huggingface.co/TheBloke/GPlatty-30B-GGUF/blob/main/gplatty-30b.Q3_K_S.gguf) | Q3_K_S | 3 | 14.06 GB| 16.56 GB | very small, high quality loss |
138
+ | [gplatty-30b.Q3_K_M.gguf](https://huggingface.co/TheBloke/GPlatty-30B-GGUF/blob/main/gplatty-30b.Q3_K_M.gguf) | Q3_K_M | 3 | 15.76 GB| 18.26 GB | very small, high quality loss |
139
+ | [gplatty-30b.Q3_K_L.gguf](https://huggingface.co/TheBloke/GPlatty-30B-GGUF/blob/main/gplatty-30b.Q3_K_L.gguf) | Q3_K_L | 3 | 17.28 GB| 19.78 GB | small, substantial quality loss |
140
+ | [gplatty-30b.Q4_0.gguf](https://huggingface.co/TheBloke/GPlatty-30B-GGUF/blob/main/gplatty-30b.Q4_0.gguf) | Q4_0 | 4 | 18.36 GB| 20.86 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
141
+ | [gplatty-30b.Q4_K_S.gguf](https://huggingface.co/TheBloke/GPlatty-30B-GGUF/blob/main/gplatty-30b.Q4_K_S.gguf) | Q4_K_S | 4 | 18.44 GB| 20.94 GB | small, greater quality loss |
142
+ | [gplatty-30b.Q4_K_M.gguf](https://huggingface.co/TheBloke/GPlatty-30B-GGUF/blob/main/gplatty-30b.Q4_K_M.gguf) | Q4_K_M | 4 | 19.62 GB| 22.12 GB | medium, balanced quality - recommended |
143
+ | [gplatty-30b.Q5_0.gguf](https://huggingface.co/TheBloke/GPlatty-30B-GGUF/blob/main/gplatty-30b.Q5_0.gguf) | Q5_0 | 5 | 22.40 GB| 24.90 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
144
+ | [gplatty-30b.Q5_K_S.gguf](https://huggingface.co/TheBloke/GPlatty-30B-GGUF/blob/main/gplatty-30b.Q5_K_S.gguf) | Q5_K_S | 5 | 22.40 GB| 24.90 GB | large, low quality loss - recommended |
145
+ | [gplatty-30b.Q5_K_M.gguf](https://huggingface.co/TheBloke/GPlatty-30B-GGUF/blob/main/gplatty-30b.Q5_K_M.gguf) | Q5_K_M | 5 | 23.05 GB| 25.55 GB | large, very low quality loss - recommended |
146
+ | [gplatty-30b.Q6_K.gguf](https://huggingface.co/TheBloke/GPlatty-30B-GGUF/blob/main/gplatty-30b.Q6_K.gguf) | Q6_K | 6 | 26.69 GB| 29.19 GB | very large, extremely low quality loss |
147
+ | [gplatty-30b.Q8_0.gguf](https://huggingface.co/TheBloke/GPlatty-30B-GGUF/blob/main/gplatty-30b.Q8_0.gguf) | Q8_0 | 8 | 34.57 GB| 37.07 GB | very large, extremely low quality loss - not recommended |
148
+
149
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
150
+
151
+
152
+
153
+ <!-- README_GGUF.md-provided-files end -->
154
+
155
+ <!-- README_GGUF.md-how-to-download start -->
156
+ ## How to download GGUF files
157
+
158
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
159
+
160
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
161
+ - LM Studio
162
+ - LoLLMS Web UI
163
+ - Faraday.dev
164
+
165
+ ### In `text-generation-webui`
166
+
167
+ Under Download Model, you can enter the model repo: TheBloke/GPlatty-30B-GGUF and below it, a specific filename to download, such as: gplatty-30b.q4_K_M.gguf.
168
+
169
+ Then click Download.
170
+
171
+ ### On the command line, including multiple files at once
172
+
173
+ I recommend using the `huggingface-hub` Python library:
174
+
175
+ ```shell
176
+ pip3 install huggingface-hub>=0.17.1
177
+ ```
178
+
179
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
180
+
181
+ ```shell
182
+ huggingface-cli download TheBloke/GPlatty-30B-GGUF gplatty-30b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
183
+ ```
184
+
185
+ <details>
186
+ <summary>More advanced huggingface-cli download usage</summary>
187
+
188
+ You can also download multiple files at once with a pattern:
189
+
190
+ ```shell
191
+ huggingface-cli download TheBloke/GPlatty-30B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
192
+ ```
193
+
194
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
195
+
196
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
197
+
198
+ ```shell
199
+ pip3 install hf_transfer
200
+ ```
201
+
202
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
203
+
204
+ ```shell
205
+ HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/GPlatty-30B-GGUF gplatty-30b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
206
+ ```
207
+
208
+ Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
209
+ </details>
210
+ <!-- README_GGUF.md-how-to-download end -->
211
+
212
+ <!-- README_GGUF.md-how-to-run start -->
213
+ ## Example `llama.cpp` command
214
+
215
+ Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
216
+
217
+ ```shell
218
+ ./main -ngl 32 -m gplatty-30b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
219
+ ```
220
+
221
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
222
+
223
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
224
+
225
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
226
+
227
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
228
+
229
+ ## How to run in `text-generation-webui`
230
+
231
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
232
+
233
+ ## How to run from Python code
234
+
235
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
236
+
237
+ ### How to load this model from Python using ctransformers
238
+
239
+ #### First install the package
240
+
241
+ ```bash
242
+ # Base ctransformers with no GPU acceleration
243
+ pip install ctransformers>=0.2.24
244
+ # Or with CUDA GPU acceleration
245
+ pip install ctransformers[cuda]>=0.2.24
246
+ # Or with ROCm GPU acceleration
247
+ CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
248
+ # Or with Metal GPU acceleration for macOS systems
249
+ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
250
+ ```
251
+
252
+ #### Simple example code to load one of these GGUF models
253
+
254
+ ```python
255
+ from ctransformers import AutoModelForCausalLM
256
+
257
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
258
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/GPlatty-30B-GGUF", model_file="gplatty-30b.q4_K_M.gguf", model_type="llama", gpu_layers=50)
259
+
260
+ print(llm("AI is going to"))
261
+ ```
262
+
263
+ ## How to use with LangChain
264
+
265
+ Here's guides on using llama-cpp-python or ctransformers with LangChain:
266
+
267
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
268
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
269
+
270
+ <!-- README_GGUF.md-how-to-run end -->
271
+
272
+ <!-- footer start -->
273
+ <!-- 200823 -->
274
+ ## Discord
275
+
276
+ For further support, and discussions on these models and AI in general, join us at:
277
+
278
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
279
+
280
+ ## Thanks, and how to contribute
281
+
282
+ Thanks to the [chirper.ai](https://chirper.ai) team!
283
+
284
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
285
+
286
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
287
+
288
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
289
+
290
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
291
+
292
+ * Patreon: https://patreon.com/TheBlokeAI
293
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
294
+
295
+ **Special thanks to**: Aemon Algiz.
296
+
297
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
298
+
299
+
300
+ Thank you to all my generous patrons and donaters!
301
+
302
+ And thank you again to a16z for their generous grant.
303
+
304
+ <!-- footer end -->
305
+
306
+ <!-- original-model-card start -->
307
+ # Original model card: Lilloukas' GPlatty 30B
308
+
309
+
310
+ # Information
311
+
312
+ GPlatty-30B is a merge of [garage-bAInd/Platypus-30B](https://huggingface.co/lilloukas/Platypus-30B) and [chansung/gpt4-alpaca-lora-30b](https://huggingface.co/chansung/gpt4-alpaca-lora-30b)
313
+
314
+ | Metric | Value |
315
+ |-----------------------|-------|
316
+ | MMLU (5-shot) | 63.6 |
317
+ | ARC (25-shot) | 66.0 |
318
+ | HellaSwag (10-shot) | 84.8 |
319
+ | TruthfulQA (0-shot) | 53.8 |
320
+ | Avg. | 67.0 |
321
+
322
+ We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above.
323
+
324
+ ## Model Details
325
+
326
+ * **Trained by**: Platypus-30B trained by Cole Hunter & Ariel Lee; gpt4-alpaca-lora-30b by chansung.
327
+ * **Model type:** **GPlatty-30B** is an auto-regressive language model based on the LLaMA transformer architecture.
328
+ * **Language(s)**: English
329
+ * **License for base weights**: License for the base LLaMA model's weights is Meta's [non-commercial bespoke license](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md).
330
+
331
+ | Hyperparameter | Value |
332
+ |---------------------------|-------|
333
+ | \\(n_\text{parameters}\\) | 33B |
334
+ | \\(d_\text{model}\\) | 6656 |
335
+ | \\(n_\text{layers}\\) | 60 |
336
+ | \\(n_\text{heads}\\) | 52 |
337
+
338
+
339
+ ## Reproducing Evaluation Results
340
+ Install LM Evaluation Harness:
341
+ ```
342
+ git clone https://github.com/EleutherAI/lm-evaluation-harness
343
+ cd lm-evaluation-harness
344
+ pip install -e .
345
+ ```
346
+ Each task was evaluated on a single A100 80GB GPU.
347
+
348
+ ARC:
349
+ ```
350
+ python main.py --model hf-causal-experimental --model_args pretrained=garage-bAInd/GPlatty-30B --tasks arc_challenge --batch_size 1 --no_cache --write_out --output_path results/Platypus-30B/arc_challenge_25shot.json --device cuda --num_fewshot 25
351
+ ```
352
+
353
+ HellaSwag:
354
+ ```
355
+ python main.py --model hf-causal-experimental --model_args pretrained=garage-bAInd/GPlatty-30B --tasks hellaswag --batch_size 1 --no_cache --write_out --output_path results/Platypus-30B/hellaswag_10shot.json --device cuda --num_fewshot 10
356
+ ```
357
+
358
+ MMLU:
359
+ ```
360
+ python main.py --model hf-causal-experimental --model_args pretrained=garage-bAInd/GPlatty-30B --tasks hendrycksTest-* --batch_size 1 --no_cache --write_out --output_path results/Platypus-30B/mmlu_5shot.json --device cuda --num_fewshot 5
361
+ ```
362
+
363
+ TruthfulQA:
364
+ ```
365
+ python main.py --model hf-causal-experimental --model_args pretrained=garage-bAInd/GPlatty-30B --tasks truthfulqa_mc --batch_size 1 --no_cache --write_out --output_path results/Platypus-30B/truthfulqa_0shot.json --device cuda
366
+ ```
367
+ ## Limitations and bias
368
+
369
+ The base LLaMA model is trained on various data, some of which may contain offensive, harmful, and biased content that can lead to toxic behavior. See Section 5.1 of the LLaMA paper. We have not performed any studies to determine how fine-tuning on the aforementioned datasets affect the model's behavior and toxicity. Do not treat chat responses from this model as a substitute for human judgment or as a source of truth. Please use responsibly.
370
+
371
+ ## Citations
372
+
373
+ ```bibtex
374
+ @article{touvron2023llama,
375
+ title={LLaMA: Open and Efficient Foundation Language Models},
376
+ author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
377
+ journal={arXiv preprint arXiv:2302.13971},
378
+ year={2023}
379
+ }
380
+ @article{hu2021lora,
381
+ title={LoRA: Low-Rank Adaptation of Large Language Models},
382
+ author={Hu, Edward J. and Shen, Yelong and Wallis, Phillip and Allen-Zhu, Zeyuan and Li, Yuanzhi and Wang, Shean and Chen, Weizhu},
383
+ journal={CoRR},
384
+ year={2021}
385
+ }
386
+ ```
387
+
388
+ <!-- original-model-card end -->