TheBloke commited on
Commit
185ffd3
1 Parent(s): 14dce0b

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -18
README.md CHANGED
@@ -59,7 +59,7 @@ This repo contains GGUF format model files for [Lilloukas' GPlatty 30B](https://
59
  <!-- README_GGUF.md-about-gguf start -->
60
  ### About GGUF
61
 
62
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
63
 
64
  Here is an incomplate list of clients and libraries that are known to support GGUF:
65
 
@@ -102,7 +102,7 @@ Below is an instruction that describes a task. Write a response that appropriate
102
  <!-- compatibility_gguf start -->
103
  ## Compatibility
104
 
105
- These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
106
 
107
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
108
 
@@ -166,7 +166,7 @@ Then click Download.
166
  I recommend using the `huggingface-hub` Python library:
167
 
168
  ```shell
169
- pip3 install huggingface-hub>=0.17.1
170
  ```
171
 
172
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
@@ -195,25 +195,25 @@ pip3 install hf_transfer
195
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
196
 
197
  ```shell
198
- HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/GPlatty-30B-GGUF gplatty-30b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
199
  ```
200
 
201
- Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
202
  </details>
203
  <!-- README_GGUF.md-how-to-download end -->
204
 
205
  <!-- README_GGUF.md-how-to-run start -->
206
  ## Example `llama.cpp` command
207
 
208
- Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
209
 
210
  ```shell
211
- ./main -ngl 32 -m gplatty-30b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
212
  ```
213
 
214
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
215
 
216
- Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
217
 
218
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
219
 
@@ -227,22 +227,24 @@ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://git
227
 
228
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
229
 
230
- ### How to load this model from Python using ctransformers
231
 
232
  #### First install the package
233
 
234
- ```bash
 
 
235
  # Base ctransformers with no GPU acceleration
236
- pip install ctransformers>=0.2.24
237
  # Or with CUDA GPU acceleration
238
- pip install ctransformers[cuda]>=0.2.24
239
- # Or with ROCm GPU acceleration
240
- CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
241
- # Or with Metal GPU acceleration for macOS systems
242
- CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
243
  ```
244
 
245
- #### Simple example code to load one of these GGUF models
246
 
247
  ```python
248
  from ctransformers import AutoModelForCausalLM
@@ -255,7 +257,7 @@ print(llm("AI is going to"))
255
 
256
  ## How to use with LangChain
257
 
258
- Here's guides on using llama-cpp-python or ctransformers with LangChain:
259
 
260
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
261
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
 
59
  <!-- README_GGUF.md-about-gguf start -->
60
  ### About GGUF
61
 
62
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
63
 
64
  Here is an incomplate list of clients and libraries that are known to support GGUF:
65
 
 
102
  <!-- compatibility_gguf start -->
103
  ## Compatibility
104
 
105
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
106
 
107
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
108
 
 
166
  I recommend using the `huggingface-hub` Python library:
167
 
168
  ```shell
169
+ pip3 install huggingface-hub
170
  ```
171
 
172
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
 
195
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
196
 
197
  ```shell
198
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/GPlatty-30B-GGUF gplatty-30b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
199
  ```
200
 
201
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
202
  </details>
203
  <!-- README_GGUF.md-how-to-download end -->
204
 
205
  <!-- README_GGUF.md-how-to-run start -->
206
  ## Example `llama.cpp` command
207
 
208
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
209
 
210
  ```shell
211
+ ./main -ngl 32 -m gplatty-30b.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
212
  ```
213
 
214
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
215
 
216
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
217
 
218
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
219
 
 
227
 
228
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
229
 
230
+ ### How to load this model in Python code, using ctransformers
231
 
232
  #### First install the package
233
 
234
+ Run one of the following commands, according to your system:
235
+
236
+ ```shell
237
  # Base ctransformers with no GPU acceleration
238
+ pip install ctransformers
239
  # Or with CUDA GPU acceleration
240
+ pip install ctransformers[cuda]
241
+ # Or with AMD ROCm GPU acceleration (Linux only)
242
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
243
+ # Or with Metal GPU acceleration for macOS systems only
244
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
245
  ```
246
 
247
+ #### Simple ctransformers example code
248
 
249
  ```python
250
  from ctransformers import AutoModelForCausalLM
 
257
 
258
  ## How to use with LangChain
259
 
260
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
261
 
262
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
263
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)