File size: 6,238 Bytes
a5e9cde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
# hacky fix for HF environment issues
import os
os.system("pip uninstall -y spaces")
os.system('pip install spaces==0.17.0')
os.system("pip uninstall -y gradio")
os.system("pip uninstall -y pydantic")
os.system("pip uninstall -y typer")
os.system('pip install typer==0.4.0')
os.system('pip install pydantic==1.8.2 --use-deprecated=legacy-resolver')
import appStore.vulnerability_analysis as vulnerability_analysis
import appStore.doc_processing as processing
from appStore.rag import run_query
from utils.uploadAndExample import add_upload, get_tabs
from utils.vulnerability_classifier import label_dict
import streamlit as st
import pandas as pd
import plotly.express as px
st.set_page_config(page_title = 'Vulnerability Analysis',
initial_sidebar_state='expanded', layout="wide")
with st.sidebar:
# upload and example doc
choice = st.sidebar.radio(label = 'Select the Document',
help = 'You can upload your own documents \
or use the example document',
options = ('Upload Document', 'Try Example'),
horizontal = True)
add_upload(choice)
with st.container():
st.markdown("<h2 style='text-align: center;'> Vulnerability Analysis </h2>", unsafe_allow_html=True)
st.write(' ')
with st.expander("ℹ️ - About this app", expanded=False):
st.write(
"""
The Vulnerability Analysis App is an open-source\
digital tool which aims to assist policy analysts and \
other users in extracting and filtering references \
to different vulnerable groups from public documents.
""")
st.write("""
What Happens in background?
- Step 1: Once the document is provided to app, it undergoes *Pre-processing*.\
In this step the document is broken into smaller paragraphs \
(based on word/sentence count).
- Step 2: The paragraphs are then fed to the **Vulnerability Classifier** which detects if
the paragraph contains any references to vulnerable groups.
""")
st.write("")
# Define the apps used
apps = [processing.app, vulnerability_analysis.app]
multiplier_val = 1 / len(apps)
if st.button("Analyze Documents"):
prg = st.progress(0.0)
for i, func in enumerate(apps):
func()
prg.progress((i + 1) * multiplier_val)
if 'combined_files_df' in st.session_state: # check for existence of processed documents
# get the filenames from the processed docs dataframe so we can use for tab names
uploaded_docs = [value for key, value in st.session_state.items() if key.startswith('filename_')]
tab_titles = get_tabs(uploaded_docs)
if tab_titles:
tabs = st.tabs(tab_titles)
# Render the results (Pie chart, Summary and Table) in indidivual tabs for each doc
for tab, doc in zip(tabs, uploaded_docs):
with tab:
# Main app code
with st.container():
st.write(' ')
# Assign dataframe a name
df_vul = st.session_state['combined_files_df']
df_vul = df_vul[df_vul['filename'] == doc]
col1, col2 = st.columns([1,1])
with col1:
# Header
st.subheader("Explore references to vulnerable groups:")
# Text
num_paragraphs = len(df_vul['Vulnerability Label'])
num_references = len(df_vul[df_vul['Vulnerability Label'] != 'Other'])
st.markdown(f"""<div style="text-align: justify;"> The document contains a
total of <span style="color: red;">{num_paragraphs}</span> paragraphs.
We identified <span style="color: red;">{num_references}</span>
references to vulnerable groups.</div>
<br>
In the pie chart on the right you can see the distribution of the different
groups defined. For a more detailed view in the text, see the paragraphs and
their respective labels in the table below.</div>""", unsafe_allow_html=True)
with col2:
### Pie chart
# Create a df that stores all the labels
df_labels = pd.DataFrame(list(label_dict.items()), columns=['Label ID', 'Label'])
# Count how often each label appears in the "Vulnerability Labels" column
label_counts = df_vul['Vulnerability Label'].value_counts().reset_index()
label_counts.columns = ['Label', 'Count']
# Merge the label counts with the df_label DataFrame
df_labels = df_labels.merge(label_counts, on='Label', how='left')
# Configure graph
fig = px.pie(df_labels,
names="Label",
values="Count",
title='Label Counts',
hover_name="Count",
color_discrete_sequence=px.colors.qualitative.Plotly
)
#Show plot
st.plotly_chart(fig, use_container_width=True)
### Document Summary
st.markdown("----")
st.markdown('**DOCUMENT FINDINGS SUMMARY:**')
# filter out 'Other' cause we don't want that in the table (and it's way too big for the summary)
df_docs = df_vul[df_vul['Vulnerability Label'] != 'Other']
# construct RAG query, send to openai and process response
run_query(df_docs)
st.markdown("----")
with st.expander("ℹ️ - Document Text Classifications", expanded=False):
### Table
st.table(df_docs)
|