Upload updated model
Browse files- README.md +27 -8
- pytorch_model.bin +3 -0
- tokenizer.model +3 -0
README.md
CHANGED
@@ -5,10 +5,11 @@ model-index:
|
|
5 |
- name: out
|
6 |
results: []
|
7 |
---
|
8 |
-
### This is the Instruction Fine Tuned version of [Tiny Llama](https://github.com/jzhang38/TinyLlama) on [@Teknium1's](https://twitter.com/Teknium1) [openhermes](https://huggingface.co/datasets/teknium/openhermes) dataset.
|
9 |
|
10 |
-
|
|
|
11 |
|
|
|
12 |
<details><summary>See axolotl config</summary>
|
13 |
|
14 |
axolotl version: `0.3.0`
|
@@ -51,6 +52,8 @@ gradient_accumulation_steps: 2
|
|
51 |
micro_batch_size: 8
|
52 |
num_epochs: 1
|
53 |
optimizer: adamw_bnb_8bit
|
|
|
|
|
54 |
lr_scheduler: cosine
|
55 |
learning_rate: 0.0002
|
56 |
|
@@ -86,9 +89,25 @@ special_tokens:
|
|
86 |
|
87 |
</details><br>
|
88 |
|
|
|
89 |
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
### Training hyperparameters
|
94 |
|
@@ -102,7 +121,7 @@ The following hyperparameters were used during training:
|
|
102 |
- gradient_accumulation_steps: 2
|
103 |
- total_train_batch_size: 128
|
104 |
- total_eval_batch_size: 64
|
105 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-
|
106 |
- lr_scheduler_type: cosine
|
107 |
- lr_scheduler_warmup_steps: 100
|
108 |
- num_epochs: 1
|
@@ -113,9 +132,9 @@ The following hyperparameters were used during training:
|
|
113 |
| Training Loss | Epoch | Step | Validation Loss |
|
114 |
|:-------------:|:-----:|:----:|:---------------:|
|
115 |
| 3.0006 | 0.0 | 1 | 1.6838 |
|
116 |
-
| 0.
|
117 |
-
|
|
118 |
-
|
|
119 |
|
120 |
|
121 |
### Framework versions
|
|
|
5 |
- name: out
|
6 |
results: []
|
7 |
---
|
|
|
8 |
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
|
12 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
13 |
<details><summary>See axolotl config</summary>
|
14 |
|
15 |
axolotl version: `0.3.0`
|
|
|
52 |
micro_batch_size: 8
|
53 |
num_epochs: 1
|
54 |
optimizer: adamw_bnb_8bit
|
55 |
+
adam_epsilon: 0.00001
|
56 |
+
max_grad_norm: 1.0
|
57 |
lr_scheduler: cosine
|
58 |
learning_rate: 0.0002
|
59 |
|
|
|
89 |
|
90 |
</details><br>
|
91 |
|
92 |
+
# out
|
93 |
|
94 |
+
This model was trained from scratch on the None dataset.
|
95 |
+
It achieves the following results on the evaluation set:
|
96 |
+
- Loss: 1.3647
|
97 |
+
|
98 |
+
## Model description
|
99 |
+
|
100 |
+
More information needed
|
101 |
+
|
102 |
+
## Intended uses & limitations
|
103 |
+
|
104 |
+
More information needed
|
105 |
+
|
106 |
+
## Training and evaluation data
|
107 |
+
|
108 |
+
More information needed
|
109 |
+
|
110 |
+
## Training procedure
|
111 |
|
112 |
### Training hyperparameters
|
113 |
|
|
|
121 |
- gradient_accumulation_steps: 2
|
122 |
- total_train_batch_size: 128
|
123 |
- total_eval_batch_size: 64
|
124 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-05
|
125 |
- lr_scheduler_type: cosine
|
126 |
- lr_scheduler_warmup_steps: 100
|
127 |
- num_epochs: 1
|
|
|
132 |
| Training Loss | Epoch | Step | Validation Loss |
|
133 |
|:-------------:|:-----:|:----:|:---------------:|
|
134 |
| 3.0006 | 0.0 | 1 | 1.6838 |
|
135 |
+
| 0.8195 | 0.25 | 451 | 1.4620 |
|
136 |
+
| 0.6836 | 0.5 | 902 | 1.4158 |
|
137 |
+
| 0.6811 | 0.75 | 1353 | 1.3647 |
|
138 |
|
139 |
|
140 |
### Framework versions
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc780bb0faf671a3cb8409e7b4aab151cf6c760ad7ebe2748a189370924e3bfb
|
3 |
+
size 2200123773
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|