File size: 1,523 Bytes
7f137f4
 
 
 
 
 
 
 
 
35b1d48
7f137f4
 
 
 
 
 
 
 
 
a51a49b
7f137f4
 
 
 
 
 
 
 
 
 
 
 
 
 
35b1d48
7f137f4
 
 
 
35b1d48
7f137f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
library_name: transformers
license: apache-2.0
tags:
- jamba
- mamba
- moe
---

### Mini-Jamba-v2

[**Experimental Version**] We initialized the model according to [Jamba](https://huggingface.co/ai21labs/Jamba-v0.1), but with much smaller parameters. It was then trained using about 1B of python code, and has the simplest python code generation capabilities.

### Usage

Here give some examples of how to use our model:

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

prompt = '''def min(arr):
    """
    Returns the minimum value from the list `arr`.
    
    Parameters:
    - arr (list): A list of numerical values.
    
    Returns:
    - The minimum value in `arr`.
    """
'''

tokenizer = AutoTokenizer.from_pretrained(
    "TechxGenus/Mini-Jamba-v2",
    trust_remote_code=True,
)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
    "TechxGenus/Mini-Jamba-v2",
    torch_dtype=torch.float16,
    device_map="auto",
    trust_remote_code=True,
)
inputs = tokenizer.encode(prompt, return_tensors="pt")
outputs = model.generate(
    input_ids=inputs.to(model.device),
    max_new_tokens=64,
    do_sample=False,
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

```

### Note

Model may sometimes make errors, produce misleading contents, or struggle to manage tasks that are not related to coding. It has undergone very limited testing. Additional safety testing should be performed before any real-world deployments.