File size: 8,975 Bytes
2ce2d73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from __future__ import annotations

import configparser
import pathlib
import typing
import os

import torch
import transformers
from torch.nn.utils.rnn import pad_sequence

from .config import LYRA_XVERSE_PARAM
from .model import XVERSEModel


class lyraXVERSE:
    def __init__(self, model_path, tokenizer_path=None, dtype='fp16', memopt_mode=1, arch='Ampere', cuda_version=12) -> None:
        self.model_path = model_path
        self.tokenizer_path = tokenizer_path
        self.dtype = dtype
        self.memopt_mode = memopt_mode
        self.arch = arch
        self.cuda_version = cuda_version
        
        self.model, self.tokenizer = self.load_model_and_tokenizer()
        print("Got model and tokenizer")

    def load_model_and_tokenizer(self):
        if self.tokenizer_path is None:
            tokenizer_path = self.model_path
        else:
            tokenizer_path = self.tokenizer_path

        print(f'Loading tokenizer from {tokenizer_path}')
        tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_path)

        checkpoint_path = pathlib.Path(self.model_path)
        config_path = checkpoint_path / 'config.ini'

        if config_path.exists():
            # Read model params from config.
            cfg = configparser.ConfigParser()
            cfg.read(config_path)
            model_name = 'llama'
            
            inference_data_type = self.dtype
            if inference_data_type == None:
                inference_data_type = cfg.get(model_name, "weight_data_type")
            model_args = dict(
                head_num=cfg.getint(model_name, 'head_num'),
                size_per_head=cfg.getint(model_name, "size_per_head"),
                inter_size=cfg.getint(model_name, 'inter_size'),
                layer_num=cfg.getint(model_name, "num_layer"),
                rotary_embedding_dim=cfg.getint(model_name, 'rotary_embedding'),
                layernorm_eps=cfg.getfloat(model_name, 'layernorm_eps'),
                vocab_size=cfg.getint(model_name, "vocab_size"),
                start_id=cfg.getint(model_name, "start_id"),
                end_id=cfg.getint(model_name, "end_id"),
                weights_data_type=cfg.get(model_name, "weight_data_type"),
                tensor_para_size=cfg.getint(model_name, "tensor_para_size"),
                inference_data_type=inference_data_type)
        else:
            inference_data_type = self.dtype
            if inference_data_type == None:
                inference_data_type = LYRA_XVERSE_PARAM.weights_data_type
            model_args = dict(head_num=LYRA_XVERSE_PARAM.num_heads,
                              size_per_head=LYRA_XVERSE_PARAM.size_per_head,
                              inter_size=LYRA_XVERSE_PARAM.inter_size,
                              layer_num=LYRA_XVERSE_PARAM.num_layers,
                              rotary_embedding_dim=LYRA_XVERSE_PARAM.rotary_embedding,
                              layernorm_eps=LYRA_XVERSE_PARAM.layernorm_eps,
                              vocab_size=LYRA_XVERSE_PARAM.vocab_size,
                              start_id=LYRA_XVERSE_PARAM.start_id or tokenizer.bos_token_id,
                              end_id=LYRA_XVERSE_PARAM.end_id or tokenizer.eos_token_id,
                              weights_data_type=LYRA_XVERSE_PARAM.weights_data_type,
                              tensor_para_size=LYRA_XVERSE_PARAM.tensor_para_size,
                              inference_data_type=inference_data_type)

        # update common parameters

        # Load the C++ model into Pytorch model.
        sm = "sm80"
        
        if self.arch == "Ampere":
            sm = "sm80"
        elif self.arch == "Volta":
            sm = "sm70"
        else:
            raise Exception(f"unsupported arch: {self.arch}")

        cu = 'cu11'
        if self.cuda_version == 11:
            cu = 'cu11'
        elif self.cuda_version == 12:
            cu = 'cu12'
        else:
            raise Exception(f"unsupported cuda version: {self.cuda_version}")
        
        lib_path = pathlib.Path(__file__).parent / "ftlib" / f"libth_transformer_{sm}_{cu}.so"
        model_args.update(dict(
            lib_path=lib_path,
            model_path=os.path.join(self.model_path, "1-gpu-fp16.bin"),
            max_seq_len=0,  # for position seq embedding
            pipeline_para_size=LYRA_XVERSE_PARAM.pipeline_para_size,
            use_gptj_residual=LYRA_XVERSE_PARAM.use_gptj_residual,
            memopt_mode=self.memopt_mode
        ))

        print('[FT][INFO] Load Our FT Highly Optimized XVERSE model')
        for k, v in model_args.items():
            print(f' - {k.ljust(25, ".")}: {v}')

        # Check sanity and consistency between the model and tokenizer.
        checklist = ['head_num', 'size_per_head', 'vocab_size', 'layer_num',
                     'tensor_para_size', 'tensor_para_size', 'weights_data_type']
        if None in [model_args[k] for k in checklist]:
            none_params = [p for p in checklist if model_args[p] is None]
            print(f'[FT][WARNING] Found None parameters {none_params}. They must '
                  f'be provided either by config file or CLI arguments.')
        if model_args['start_id'] != tokenizer.bos_token_id:
            print('[FT][WARNING] Given start_id is not matched with the bos token '
                  'id of the pretrained tokenizer.')
        if model_args['end_id'] not in (tokenizer.pad_token_id, tokenizer.eos_token_id):
            print('[FT][WARNING] Given end_id is not matched with neither pad '
                  'token id nor eos token id of the pretrained tokenizer.')

        print(f'Loading model from {self.model_path}')
        model = XVERSEModel(**model_args)
        return model, tokenizer

    def generate(self, prompts: typing.List[str] | str,
                 output_length: int = 512,
                 beam_width: int = 1,
                 top_k: typing.Optional[torch.IntTensor] = 1,
                 top_p: typing.Optional[torch.FloatTensor] = 1.0,
                 beam_search_diversity_rate: typing.Optional[torch.FloatTensor] = 0.0,
                 temperature: typing.Optional[torch.FloatTensor] = 1.0,
                 len_penalty: typing.Optional[torch.FloatTensor] = 0.0,
                 repetition_penalty: typing.Optional[torch.FloatTensor] = 1.0,
                 presence_penalty: typing.Optional[torch.FloatTensor] = None,
                 min_length: typing.Optional[torch.IntTensor] = None,
                 bad_words_list: typing.Optional[torch.IntTensor] = None,
                 do_sample: bool = False,
                 return_output_length: bool = False,
                 return_cum_log_probs: int = 0):
        #
        if isinstance(prompts, str):
            prompts = [prompts, ]

        inputs = prompts

        batch_size = len(inputs)
        ones_int = torch.ones(size=[batch_size], dtype=torch.int32)
        ones_float = torch.ones(size=[batch_size], dtype=torch.float32)

        # we must encode the raw prompt text one by one in order to compute the length of the original text.
        input_token_ids = [self.tokenizer(text, return_tensors="pt").input_ids.int().squeeze() for text in inputs]
        input_lengths = torch.IntTensor([len(ids) for ids in input_token_ids])
        # after got the length of each input text tokens. we can batchfy the input list to a tensor. padding the right.
        input_token_ids = pad_sequence(input_token_ids, batch_first=True, padding_value=self.tokenizer.eos_token_id)

        random_seed = None
        if do_sample:
            random_seed = torch.randint(0, 262144, (batch_size,), dtype=torch.long)

        outputs = self.model(start_ids=input_token_ids,
                             start_lengths=input_lengths,
                             output_len=output_length,
                             beam_width=beam_width,
                             top_k=top_k * ones_int,
                             top_p=top_p * ones_float,
                             beam_search_diversity_rate=beam_search_diversity_rate * ones_float,
                             temperature=temperature * ones_float,
                             len_penalty=len_penalty * ones_float,
                             repetition_penalty=repetition_penalty * ones_float,
                             random_seed=random_seed,
                             return_output_length=return_output_length,
                             return_cum_log_probs=return_cum_log_probs)

        if return_cum_log_probs > 0:
            outputs = outputs[0]  # output_token_ids.

        # Slice the generated token ids of the 1st beam result.
        # output = input tokens + generated tokens.
        output_token_ids = [out[0, length:].cpu()
                            for out, length in zip(outputs, input_lengths)]

        output_texts = self.tokenizer.batch_decode(
            output_token_ids, skip_special_tokens=True)

        return output_texts