--- license: creativeml-openrail-m language: - en tags: - art - Stable Diffusion --- ## Model Card for lyraSD2 lyraSD2 is currently the **fastest Stable Diffusion model** that can 100% align the outputs of **diffusers** available, boasting an inference cost of only **0.52 seconds** for a 512x512 image, accelerating the process up to **80% faster** than the original version. Among its main features are: - 4 Commonly used Pipelines - - Text2Img - - Img2Img - - ControlNetText2Img - - ControlNetImg2Img - 100% likeness to diffusers output - ControlNet Hot Swap: Can hot swap a ControlNet model weights within 0.4s (0s if cached) - Lora How Swap: Can hot swap a Lora within 0.5s (0.1s if cached) - device requirements: Nvidia Ampere architecture (A100, A10) or compatable ## Speed ### test environment - device: Nvidia A100 40G - img size: 512x512 - percision:fp16 - steps: 20 - sampler: EulerA ### Text2Img |model|time cost(ms)| |:-:|:-:| |torch2.0.1 + diffusers|~667ms| |lyraSD|~528ms| ### ControlNet-Text2Img |model|time cost(ms)| |:-:|:-:| |torch2.0.1 + diffusers|~930ms| |lyraSD2|~745ms| ## Model Sources - **Checkpoint:** https://civitai.com/models/7371/rev-animated - **ControlNet:** https://huggingface.co/lllyasviel/sd-controlnet-canny - **Lora:** https://civitai.com/models/18323?modelVersionId=46846 ## Text2Img Uses ```python import torch import time from lyrasd_model import LyraSdTxt2ImgPipeline # 存放模型文件的路径,应该包含一下结构: # 1. clip 模型 # 2. 转换好的优化后的 unet 模型,放入其中的 unet_bins 文件夹 # 3. vae 模型 # 4. scheduler 配置 # LyraSD 的 C++ 编译动态链接库,其中包含 C++ CUDA 计算的细节 lib_path = "./lyrasd_model/lyrasd_lib/libth_lyrasd_cu11_sm80.so" model_path = "./models/lyrasd_rev_animated" lora_path = "./models/lyrasd_xiaorenshu_lora" # 构建 Txt2Img 的 Pipeline model = LyraSdTxt2ImgPipeline(model_path, lib_path) # load lora # 参数分别为 lora 存放位置,名字,lora 强度,lora模型精度 model.load_lora(lora_path, "xiaorenshu", 0.4, "fp32") # 准备应用的输入和超参数 prompt = "a cat, cute, cartoon, concise, traditional, chinese painting, Tang and Song Dynasties, masterpiece, 4k, 8k, UHD, best quality" negative_prompt = "(((horrible))), (((scary))), (((naked))), (((large breasts))), high saturation, colorful, human:2, body:2, low quality, bad quality, lowres, out of frame, duplicate, watermark, signature, text, frames, cut, cropped, malformed limbs, extra limbs, (((missing arms))), (((missing legs)))" height, width = 512, 512 steps = 30 guidance_scale = 7 generator = torch.Generator().manual_seed(123) num_images = 1 start = time.perf_counter() # 推理生成 images = model(prompt, height, width, steps, guidance_scale, negative_prompt, num_images, generator=generator) print("image gen cost: ",time.perf_counter() - start) # 存储生成的图片 for i, image in enumerate(images): image.save(f"outputs/res_txt2img_lora_{i}.png") # unload lora,参数为 lora 的名字,是否清除 lora 缓存 # model.unload_lora("xiaorenshu", True) ``` ## Demo output ### Text2Img #### Text2Img without Lora ![text2img_demo](./outputs/res_txt2img_0.png) #### Text2Img with Lora ![text2img_demo](./outputs/res_txt2img_lora_0.png) ### Img2Img #### Img2Img input img2img input #### Img2Img output ![text2img_demo](./outputs/res_img2img_0.png) ### ControlNet Text2Img #### Control Image ![text2img_demo](./control_bird_canny.png) #### ControlNet Text2Img Output ![text2img_demo](./outputs/res_controlnet_txt2img_0.png) ## Docker Environment Recommendation - For Cuda 11.X: we recommend ```nvcr.io/nvidia/pytorch:22.12-py3``` - For Cuda 12.0: we recommend ```nvcr.io/nvidia/pytorch:23.02-py3``` ```bash docker pull nvcr.io/nvidia/pytorch:23.02-py3 docker run --rm -it --gpus all -v ./:/lyraSD2 nvcr.io/nvidia/pytorch:23.02-py3 pip install -r requirements.txt python txt2img_demo.py ``` ## Citation ``` bibtex @Misc{lyraSD2_2023, author = {Kangjian Wu, Zhengtao Wang, Yibo Lu, Haoxiong Su, Bin Wu}, title = {lyraSD2: Accelerating Stable Diffusion with best flexibility}, howpublished = {\url{https://huggingface.co/TMElyralab/lyraSD2}}, year = {2023} } ``` ## Report bug - start a discussion to report any bugs!--> https://huggingface.co/TMElyralab/lyraSD2/discussions - report bug with a `[bug]` mark in the title.