import inspect import os import sys import time from typing import Any, Callable, Dict, List, Optional, Union import GPUtil import torch from diffusers.loaders import TextualInversionLoaderMixin from diffusers.image_processor import PipelineImageInput, VaeImageProcessor from diffusers.models.modeling_outputs import AutoencoderKLOutput from diffusers.utils.torch_utils import logging, randn_tensor from PIL import Image from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer import gc import numpy as np from .lyrasd_vae_model import LyraSdVaeModel from diffusers.models.embeddings import ImageProjection from transformers import ( CLIPImageProcessor, CLIPVisionModelWithProjection, ) from .lyrasd_pipeline_base import LyraSDXLPipelineBase logger = logging.get_logger(__name__) # pylint: disable=invalid-name def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): """ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 """ std_text = noise_pred_text.std( dim=list(range(1, noise_pred_text.ndim)), keepdim=True) std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) # rescale the results from guidance (fixes overexposure) noise_pred_rescaled = noise_cfg * (std_text / std_cfg) # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images noise_cfg = guidance_rescale * noise_pred_rescaled + \ (1 - guidance_rescale) * noise_cfg return noise_cfg def numpy_to_pil(images): """ Convert a numpy image or a batch of images to a PIL image. """ if images.ndim == 3: images = images[None, ...] images = (images * 255).round().astype("uint8") if images.shape[-1] == 1: # special case for grayscale (single channel) images pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] else: pil_images = [Image.fromarray(image) for image in images] return pil_images def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, **kwargs, ): """ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None: print("set(inspect.signature(scheduler.set_timesteps).parameters.keys())", set( inspect.signature(scheduler.set_timesteps).parameters.keys())) accepts_timesteps = "timesteps" in set( inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps def retrieve_latents( encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" ): if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": return encoder_output.latent_dist.sample(generator) elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": return encoder_output.latent_dist.mode() elif hasattr(encoder_output, "latents"): return encoder_output.latents else: raise AttributeError( "Could not access latents of provided encoder_output") class LyraSdTxt2ImgInpaintPipeline(LyraSDXLPipelineBase): def __init__(self, device=torch.device("cuda"), dtype=torch.float16, vae_scale_factor=8, vae_scaling_factor=0.18215, num_channels_unet=9, num_channels_latents=4) -> None: super().__init__(device, dtype, num_channels_unet=num_channels_unet, num_channels_latents=num_channels_latents, vae_scale_factor=vae_scale_factor, vae_scaling_factor=vae_scaling_factor) def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: procecss multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer( prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1: -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds.to( dtype=self.text_encoder.dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view( bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: procecss multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt( uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to( dtype=self.text_encoder.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat( 1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view( batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds def load_ip_adapter(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], subfolder: str, weight_name: str, **kwargs ): # if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None: self.feature_extractor = CLIPImageProcessor() # if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None: self.image_encoder = CLIPVisionModelWithProjection.from_pretrained( pretrained_model_name_or_path_or_dict, subfolder=os.path.join(subfolder, "image_encoder"), ).to(self.device, dtype=self.dtype) # else: # print("kio: already has image_encoder", hasattr(self, "image_encoder"), getattr(self, "feature_extractor", None) is None) # kiotodo: init ImageProjection model_path = os.path.join( pretrained_model_name_or_path_or_dict, subfolder, weight_name) state_dict = torch.load(model_path, map_location="cpu") clip_embeddings_dim = state_dict["image_proj"]["proj.weight"].shape[-1] cross_attention_dim = state_dict["image_proj"]["proj.weight"].shape[0] // 4 self.encoder_hid_proj = ImageProjection( cross_attention_dim=cross_attention_dim, image_embed_dim=clip_embeddings_dim, num_image_text_embeds=4 ) image_proj_state_dict = {} image_proj_state_dict.update( { "image_embeds.weight": state_dict["image_proj"]["proj.weight"], "image_embeds.bias": state_dict["image_proj"]["proj.bias"], "norm.weight": state_dict["image_proj"]["norm.weight"], "norm.bias": state_dict["image_proj"]["norm.bias"], } ) self.encoder_hid_proj.load_state_dict(image_proj_state_dict) self.encoder_hid_proj.to(dtype=self.dtype, device=self.device) dir_ipadapter = os.path.join( pretrained_model_name_or_path_or_dict, subfolder, '.'.join(weight_name.split(".")[:-1])) self.unet.load_ip_adapter(dir_ipadapter, "", 1, "fp16") def encode_image(self, image, device, num_images_per_prompt): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.feature_extractor( image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) image_embeds = self.image_encoder(image).image_embeds image_embeds = image_embeds.repeat_interleave( num_images_per_prompt, dim=0) uncond_image_embeds = torch.zeros_like(image_embeds) return image_embeds, uncond_image_embeds def decode_latents(self, latents): latents = 1 / self.vae.scaling_factor * latents image = self.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image def lyra_decode_latents(self, latents): # print("lyra_decode_latents") # np.save("", latents.) # np.save(f"/workspace/vae_model/latent.npy", latents.detach().cpu().numpy()) latents = 1 / self.vae.scaling_factor * latents # latents = latents.permute(0, 2, 3, 1).contiguous() image = self.vae.decode(latents) image = image.permute(0, 2, 3, 1) # print(image) # GPUtil.showUtilization(all=True) image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().float().numpy() return image def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min( int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] return timesteps, num_inference_steps - t_start def check_inputs( self, prompt, height, width, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if height % 64 != 0 or width % 64 != 0: # 初版暂时只支持 64 的倍数的 height 和 width raise ValueError( f"`height` and `width` have to be divisible by 64 but are {height} and {width}.") if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError( f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): if isinstance(generator, list): image_latents = [ retrieve_latents(AutoencoderKLOutput( latent_dist=self.vae.encode(image[i: i + 1])), generator=generator[i]) for i in range(image.shape[0]) ] image_latents = torch.cat(image_latents, dim=0) else: image_latents = retrieve_latents(AutoencoderKLOutput( latent_dist=self.vae.encode(image)), generator=generator) image_latents = self.vae_scaling_factor * image_latents return image_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, image=None, timestep=None, is_strength_max=True, return_noise=False, return_image_latents=False): shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if (image is None or timestep is None) and not is_strength_max: raise ValueError( "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise." "However, either the image or the noise timestep has not been provided." ) if return_image_latents or (latents is None and not is_strength_max): image = image.to(device=device, dtype=dtype) if image.shape[1] == 4: image_latents = image else: image_latents = self._encode_vae_image( image=image, generator=generator) image_latents = image_latents.repeat( batch_size // image_latents.shape[0], 1, 1, 1) if latents is None: noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # if strength is 1. then initialise the latents to noise, else initial to image + noise latents = noise if is_strength_max else self.scheduler.add_noise( image_latents, noise, timestep) # if pure noise then scale the initial latents by the Scheduler's init sigma latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents else: noise = latents.to(device) latents = noise * self.scheduler.init_noise_sigma outputs = (latents,) if return_noise: outputs += (noise,) if return_image_latents: outputs += (image_latents,) return outputs def prepare_mask_latents( self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance ): # resize the mask to latents shape as we concatenate the mask to the latents # we do that before converting to dtype to avoid breaking in case we're using cpu_offload # and half precision mask = torch.nn.functional.interpolate( mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor) ) mask = mask.to(device=device, dtype=dtype) masked_image = masked_image.to(device=device, dtype=dtype) if masked_image.shape[1] == 4: masked_image_latents = masked_image else: masked_image_latents = self._encode_vae_image( masked_image, generator=generator) # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method if mask.shape[0] < batch_size: if not batch_size % mask.shape[0] == 0: raise ValueError( "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" " of masks that you pass is divisible by the total requested batch size." ) mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) if masked_image_latents.shape[0] < batch_size: if not batch_size % masked_image_latents.shape[0] == 0: raise ValueError( "The passed images and the required batch size don't match. Images are supposed to be duplicated" f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." " Make sure the number of images that you pass is divisible by the total requested batch size." ) masked_image_latents = masked_image_latents.repeat( batch_size // masked_image_latents.shape[0], 1, 1, 1) mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask masked_image_latents = ( torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents ) # aligning device to prevent device errors when concating it with the latent model input masked_image_latents = masked_image_latents.to( device=device, dtype=dtype) return mask, masked_image_latents def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature( self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set( inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, image: PipelineImageInput = None, mask_image: PipelineImageInput = None, masked_image_latents: torch.FloatTensor = None, height: Optional[int] = None, width: Optional[int] = None, strength: float = 1.0, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, param_scale_dict: Optional[dict] = {} ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. """ # 0. Default height and width to unet height = height or self.unet_config_sample_size * self.vae_scale_factor width = width or self.unet_config_sample_size * self.vae_scale_factor # self.unet_config.sample_size = 64 # height = 512 # width = 512 # 1. Check inputs. Raise error if not correct # self.check_inputs( # prompt, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds # ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self.device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) # 3.5 Encode ipadapter_image if ip_adapter_image is not None: image_embeds, negative_image_embeds = self.encode_image( ip_adapter_image, device, num_images_per_prompt) if do_classifier_free_guidance: image_embeds = torch.cat([negative_image_embeds, image_embeds]) image_embeds = self.encoder_hid_proj(image_embeds).to(self.dtype) # 4. Prepare timesteps # self.scheduler.set_timesteps(num_inference_steps, device=device) # timesteps = self.scheduler.timesteps # 4.5 Prepare mask and image timesteps = None timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps) timesteps, num_inference_steps = self.get_timesteps( num_inference_steps=num_inference_steps, strength=strength, device=device ) # check that number of inference steps is not < 1 - as this doesn't make sense if num_inference_steps < 1: raise ValueError( f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." ) # at which timestep to set the initial noise (n.b. 50% if strength is 0.5) latent_timestep = timesteps[:1].repeat( batch_size * num_images_per_prompt) # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise is_strength_max = strength == 1.0 # 5. Preprocess mask and image init_image = self.image_processor.preprocess( image, height=height, width=width) init_image = init_image.to(dtype=torch.float32) # 5. Prepare latent variables return_image_latents = self.num_channels_unet == 4 latents_outputs = self.prepare_latents( batch_size * num_images_per_prompt, self.num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, image=init_image, timestep=latent_timestep, is_strength_max=is_strength_max, return_noise=True, return_image_latents=return_image_latents ) if return_image_latents: latents, noise, image_latents = latents_outputs else: latents, noise = latents_outputs # 5.5 Prepare mask latent variables mask_condition = self.mask_processor.preprocess( mask_image, height=height, width=width) if masked_image_latents is None: masked_image = init_image * (mask_condition < 0.5) else: masked_image = masked_image_latents mask, masked_image_latents = self.prepare_mask_latents( mask_condition, masked_image, batch_size * num_images_per_prompt, height, width, prompt_embeds.dtype, device, generator, do_classifier_free_guidance, ) # Check that sizes of mask, masked image and latents match if self.num_channels_unet == 9: # default case for runwayml/stable-diffusion-inpainting num_channels_mask = mask.shape[1] num_channels_masked_image = masked_image_latents.shape[1] if self.num_channels_latents + num_channels_mask + num_channels_masked_image != self.num_channels_unet: raise ValueError( f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" f" {self.num_channels_latents} but received `num_channels_latents`: {self.num_channels_latents} +" f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" f" = {self.num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" " `pipeline.unet` or your `mask_image` or `image` input." ) elif self.num_channels_unet != 4: raise ValueError( f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}." ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = len(timesteps) - \ num_inference_steps * self.scheduler.order for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat( [latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input( latent_model_input, t) if self.num_channels_unet == 9: latent_model_input = torch.cat( [latent_model_input, mask, masked_image_latents], dim=1) latent_model_input = latent_model_input.permute( 0, 2, 3, 1).contiguous() # latent_model_input = latent_model_input[:,:4,:,:]. # 后边三个 None 是给到controlnet 的参数,暂时给到 None 当 placeholder # todo: forward ip image_embeds # break if ip_adapter_image is not None: noise_pred = self.unet.forward( latent_model_input, prompt_embeds, t, None, None, None, None, {"ip_hidden_states": image_embeds}, param_scale_dict) else: noise_pred = self.unet.forward( latent_model_input, prompt_embeds, t) noise_pred = noise_pred.permute(0, 3, 1, 2).contiguous() # saver.save_v(f"latent_model_input_{i}", latent_model_input) # saver.save_v(f"noise_pred_{i}", noise_pred) # saver.save_v(f"prompt_embeds_{i}", prompt_embeds) # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * \ (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] if self.num_channels_unet == 4: init_latents_proper = image_latents if self.do_classifier_free_guidance: init_mask, _ = mask.chunk(2) else: init_mask = mask if i < len(timesteps) - 1: noise_timestep = timesteps[i + 1] init_latents_proper = self.scheduler.add_noise( init_latents_proper, noise, torch.tensor( [noise_timestep]) ) latents = (1 - init_mask) * init_latents_proper + \ init_mask * latents # if do_classifier_free_guidance and guidance_rescale > 0.0: # # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf # noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) # # compute the previous noisy sample x_t -> x_t-1 # latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # image = self.decode_latents(latents) image = self.lyra_decode_latents(latents) image = numpy_to_pil(image) return image