lyraSD / lyrasd_model /lyrasd_vae_model.py
yibolu
update pipeline and demos
6eca12e
raw
history blame contribute delete
No virus
16.5 kB
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
import numpy as np
from safetensors.torch import load_file
import os
class LyraSdVaeModel():
r"""
A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of block output channels.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
scaling_factor (`float`, *optional*, defaults to 0.18215):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
force_upcast (`bool`, *optional*, default to `True`):
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
can be fine-tuned / trained to a lower range without loosing too much precision in which case
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
"""
_supports_gradient_checkpointing = True
def __init__(
self,
dtype: str = "fp16",
scaling_factor: float = 0.18215,
scale_factor: int = 8,
is_upcast: bool = False
):
super().__init__()
self.is_upcast = is_upcast
self.scaling_factor = scaling_factor
self.scale_factor = scale_factor
self.model = torch.classes.lyrasd.VaeModelOp(
dtype,
is_upcast
)
self.vae_cache = {}
self.use_slicing = False
self.use_tiling = False
self.tile_latent_min_size = 512
self.tile_sample_min_size = 64
self.tile_overlap_factor = 0.25
def reload_vae_model(self, vae_path, vae_file_format='fp32'):
if len(vae_path) > 0 and vae_path[-1] != "/":
vae_path = vae_path + "/"
return self.model.reload_vae_model(vae_path, vae_file_format)
def reload_vae_model_v2(self, model_path):
checkpoint_file = os.path.join(model_path, "vae/diffusion_pytorch_model.bin")
if not os.path.exists(checkpoint_file):
checkpoint_file = os.path.join(model_path, "vae/diffusion_pytorch_model.safetensors")
if checkpoint_file in self.vae_cache:
state_dict = self.vae_cache[checkpoint_file]
else:
if "safetensors" in checkpoint_file:
state_dict = load_file(checkpoint_file)
else:
state_dict = torch.load(checkpoint_file, map_location="cpu")
# replace deprecated weights
for path in ["encoder.mid_block.attentions.0", "decoder.mid_block.attentions.0"]:
# group_norm path stays the same
# query -> to_q
if f"{path}.query.weight" in state_dict:
state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight")
if f"{path}.query.bias" in state_dict:
state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias")
# key -> to_k
if f"{path}.key.weight" in state_dict:
state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight")
if f"{path}.key.bias" in state_dict:
state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias")
# value -> to_v
if f"{path}.value.weight" in state_dict:
state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight")
if f"{path}.value.bias" in state_dict:
state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias")
# proj_attn -> to_out.0
if f"{path}.proj_attn.weight" in state_dict:
state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight")
if f"{path}.proj_attn.bias" in state_dict:
state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias")
for key in state_dict:
# print(key)
if len(state_dict[key].shape) == 4:
state_dict[key] = state_dict[key].permute(0,2,3,1).contiguous()
else:
state_dict[key] = state_dict[key]
if self.is_upcast and (key.startswith("decoder.up_blocks.2") or key.startswith("decoder.up_blocks.3") or key.startswith("decoder.conv_norm_out")):
# print(key)
state_dict[key] = state_dict[key].to(torch.float32)
else:
state_dict[key] = state_dict[key].to(torch.float16)
self.vae_cache[checkpoint_file] = state_dict
return self.model.reload_vae_model_from_cache(state_dict, "cpu")
def enable_tiling(self, use_tiling: bool = True):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.use_tiling = use_tiling
def disable_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.enable_tiling(False)
def enable_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
def lyra_decode(self, x: torch.FloatTensor) -> torch.FloatTensor:
x = x.permute(0, 2, 3, 1).contiguous()
x = self.model.vae_decode(x)
return x.permute(0, 3, 1, 2)
def lyra_encode(self, x: torch.FloatTensor) -> torch.FloatTensor:
x = x.permute(0, 2, 3, 1).contiguous()
x = self.model.vae_encode(x)
return x.permute(0, 3, 1, 2)
def encode(
self, x: torch.FloatTensor, return_dict: bool = True
) -> DiagonalGaussianDistribution:
"""
Encode a batch of images into latents.
Args:
x (`torch.FloatTensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded images. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
return self.tiled_encode(x, return_dict=return_dict)
if self.use_slicing and x.shape[0] > 1:
encoded_slices = [self.lyra_encode(
x_slice) for x_slice in x.split(1)]
h = torch.cat(encoded_slices)
posterior = DiagonalGaussianDistribution(h)
else:
moments = self.lyra_encode(x)
posterior = DiagonalGaussianDistribution(moments)
return posterior
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> torch.FloatTensor:
if self.use_tiling and (z.shape[2] > self.tile_latent_min_size or z.shape[3] > self.tile_latent_min_size):
return self.tiled_decode(z, return_dict=return_dict)
dec = self.lyra_decode(z)
return dec
def decode(
self, z: torch.FloatTensor, return_dict: bool = True, generator=None
) -> torch.FloatTensor:
"""
Decode a batch of images.
Args:
z (`torch.FloatTensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [self._decode(
z_slice) for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z)
return decoded
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[2], b.shape[2], blend_extent)
for y in range(blend_extent):
b[:, :, y, :] = a[:, :, -blend_extent + y, :] * \
(1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
return b
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
for x in range(blend_extent):
b[:, :, :, x] = a[:, :, :, -blend_extent + x] * \
(1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
return b
def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> DiagonalGaussianDistribution:
r"""Encode a batch of images using a tiled encoder.
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
output, but they should be much less noticeable.
Args:
x (`torch.FloatTensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
[`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
`tuple` is returned.
"""
overlap_size = int(self.tile_sample_min_size *
(1 - self.tile_overlap_factor))
blend_extent = int(self.tile_latent_min_size *
self.tile_overlap_factor)
row_limit = self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
rows = []
for i in range(0, x.shape[2], overlap_size):
row = []
for j in range(0, x.shape[3], overlap_size):
tile = x[:, :, i: i + self.tile_sample_min_size,
j: j + self.tile_sample_min_size]
tile = self.lyra_encode(tile)
row.append(tile)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=3))
moments = torch.cat(result_rows, dim=2)
posterior = DiagonalGaussianDistribution(moments)
return posterior
def tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> torch.FloatTensor:
r"""
Decode a batch of images using a tiled decoder.
Args:
z (`torch.FloatTensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
overlap_size = int(self.tile_latent_min_size *
(1 - self.tile_overlap_factor))
blend_extent = int(self.tile_sample_min_size *
self.tile_overlap_factor)
row_limit = self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, z.shape[2], overlap_size):
row = []
for j in range(0, z.shape[3], overlap_size):
tile = z[:, :, i: i + self.tile_latent_min_size,
j: j + self.tile_latent_min_size]
decoded = self.lyra_decode(tile)
row.append(decoded)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=3))
dec = torch.cat(result_rows, dim=2)
if not return_dict:
return (dec,)
return dec