File size: 13,963 Bytes
6eca12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import inspect
import os
import time
from typing import Any, Callable, Dict, List, Optional, Union, Tuple

import gc
import torch
import numpy as np
from glob import glob

import PIL

from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel
from diffusers.loaders import TextualInversionLoaderMixin
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL
from diffusers.schedulers import (DPMSolverMultistepScheduler,
                                  EulerAncestralDiscreteScheduler,
                                  EulerDiscreteScheduler,
                                  KarrasDiffusionSchedulers)
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.utils.torch_utils import randn_tensor
from diffusers.utils import logging
from PIL import Image
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
from diffusers.utils import PIL_INTERPOLATION
from .lyrasd_vae_model import LyraSdVaeModel

from .lora_util import add_text_lora_layer, add_xltext_lora_layer, add_lora_to_opt_model, load_state_dict
from safetensors.torch import load_file
from .lyrasdxl_pipeline_base import LyraSDXLPipelineBase

def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(
        dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + \
        (1 - guidance_rescale) * noise_cfg
    return noise_cfg


class LyraSdXLControlnetTxt2ImgPipeline(LyraSDXLPipelineBase, StableDiffusionXLPipeline):
    device = torch.device("cpu")
    dtype = torch.float32

    def __init__(self, device=torch.device("cuda"), dtype=torch.float16, vae_scale_factor=8, vae_scaling_factor=0.13025) -> None:
        self.register_to_config(force_zeros_for_empty_prompt=True)

        super().__init__(device, dtype, vae_scale_factor=vae_scale_factor, vae_scaling_factor=vae_scaling_factor)


    def prepare_image(
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        device,
        dtype,
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
        image = self.control_image_processor.preprocess(image, height, width)
        image = image.permute(0, 2, 3, 1)

        image = image.to(device=device, dtype=dtype)
        # print(image.shape)
        # print(image)

        return image

    @property
    def _execution_device(self):
        if not hasattr(self.unet, "_hf_hook"):
            return self.device
        for module in self.unet.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

    def _get_aug_emb(self, add_embedding, time_ids, text_embeds, dtype):
        time_embeds = self.add_time_proj(time_ids.flatten())
        time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
        add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
        add_embeds = add_embeds.to(dtype)
        aug_emb = add_embedding(add_embeds)
        return aug_emb

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        denoising_end: Optional[float] = None,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        controlnet_names: Optional[List[str]] = None,
        controlnet_images: Optional[List[PIL.Image.Image]] = None,
        controlnet_scale: Optional[List[float]] = None,
        guess_mode=False,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator,
                                  List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[
            int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        original_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Optional[Tuple[int, int]] = None,
    ):

        # 0. Default height and width to unet
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        original_size = original_size or (height, width)
        target_size = target_size or (height, width)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
            callback_steps,
            negative_prompt,
            negative_prompt_2,
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            cross_attention_kwargs.get(
                "scale", None) if cross_attention_kwargs is not None else None
        )
        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
        )

        control_images = []

        for image_ in controlnet_images:
            image_ = self.prepare_image(
                image=image_,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                device=device,
                dtype=prompt_embeds.dtype,
                do_classifier_free_guidance=do_classifier_free_guidance
            )

            control_images.append(image_)

        control_scales = []

        scales = [1.0, ] * 10
        if guess_mode:
            scales = torch.logspace(-1, 0, 10).tolist()

        for scale in controlnet_scale:
            scales_ = [d * scale for d in scales]
            control_scales.append(scales_)

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)

        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet_in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Prepare added time ids & embeddings
        add_text_embeds = pooled_prompt_embeds
        add_time_ids = list(
            original_size + crops_coords_top_left + target_size)
        add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype)

        if do_classifier_free_guidance:
            prompt_embeds = torch.cat(
                [negative_prompt_embeds, prompt_embeds], dim=0)
            add_text_embeds = torch.cat(
                [negative_pooled_prompt_embeds, add_text_embeds], dim=0)
            add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)

        prompt_embeds = prompt_embeds.to(device)
        add_text_embeds = add_text_embeds.to(device)
        add_time_ids = add_time_ids.to(device).repeat(
            batch_size * num_images_per_prompt, 1)

        # 8. Denoising loop
        num_warmup_steps = max(
            len(timesteps) - num_inference_steps * self.scheduler.order, 0)

        # 7.1 Apply denoising_end
        if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1:
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
                    - (denoising_end * self.scheduler.config.num_train_timesteps)
                )
            )
            num_inference_steps = len(
                list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
            timesteps = timesteps[:num_inference_steps]

        aug_emb = self._get_aug_emb(
            self.add_embedding, add_time_ids, add_text_embeds, prompt_embeds.dtype)

        controlnet_aug_embs = []
        for controlnet_name in controlnet_names:
            controlnet_aug_embs.append(self._get_aug_emb(self.controlnet_add_embedding[controlnet_name],
                                                         add_time_ids, add_text_embeds, prompt_embeds.dtype))

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat(
                    [latents] * 2) if do_classifier_free_guidance else latents

                latent_model_input = self.scheduler.scale_model_input(
                    latent_model_input, t)
                latent_model_input = latent_model_input.permute(
                    0, 2, 3, 1).contiguous()

                noise_pred = self.unet.forward(
                    latent_model_input, prompt_embeds, t, aug_emb,
                    controlnet_names, control_images, controlnet_aug_embs, control_scales, guess_mode).permute(0, 3, 1, 2)

                # print(noise_pred)

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * \
                        (noise_pred_text - noise_pred_uncond)

                if do_classifier_free_guidance and guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(
                        noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(
                    noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        # make sure the VAE is in float32 mode, as it overflows in float16
        # if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
        #     self.upcast_vae()
        #     latents = latents.to(
        #         next(iter(self.vae.post_quant_conv.parameters())).dtype)
        # # latents = latents.to(torch.float32)
        # if output_type == "latent":
        #     return latents

        # np.save(f"/workspace/latents.npy", latents.detach().cpu().numpy())

        # image = self.vae.decode(
        #     latents / self.vae.config.scaling_factor, return_dict=False)[0]
        image = self.vae.decode(1 / self.vae.scaling_factor * latents)

        image = self.image_processor.postprocess(
            image, output_type=output_type)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        return image