--- language: - ja license: apache-2.0 tags: - generated_from_trainer - download_tracking datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer - cer model-index: - name: uniTKU-hubert-japanese-asr results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: name: common_voice_11_0 type: common_voice args: ja metrics: - type: wer value: 27.511982 name: Test WER - type: cer value: 11.563649 name: Test CER --- # uniTKU-hubert-japanese-asr This model was fine-tuned on a dataset provided by uniTKU, and it has maintained the original performance metrics on the [common_voice_11_0 dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/ja). This model can only predict Hiragana. ## Training Procedure Fine-tuning on the uniTKU dataset led to the following results: | Step | Training Loss | Validation Loss | WER | |-------|---------------|-----------------|--------| | 100 | 1.127100 | 1.089644 | 0.668508| | 200 | 0.873500 | 0.682353 | 0.508287| | 300 | 0.786200 | 0.482965 | 0.397790| | 400 | 0.670400 | 0.345377 | 0.381215| | 500 | 0.719500 | 0.387554 | 0.337017| | 600 | 0.707700 | 0.371083 | 0.292818| | 700 | 0.658300 | 0.236447 | 0.243094| | 800 | 0.611100 | 0.207679 | 0.193370| ### Training hyperparameters The training hyperparameters remained consistent throughout the fine-tuning process: - learning_rate: 1e-4 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 2 - max_steps: 800 - lr_scheduler_type: linear ### How to evaluate the model ```python from transformers import HubertForCTC, Wav2Vec2Processor from datasets import load_dataset import torch import torchaudio import librosa import numpy as np import re import MeCab import pykakasi from evaluate import load model = HubertForCTC.from_pretrained('TKU410410103/uniTKU-hubert-japanese-asr') processor = Wav2Vec2Processor.from_pretrained("TKU410410103/uniTKU-hubert-japanese-asr") # load dataset test_dataset = load_dataset('mozilla-foundation/common_voice_11_0', 'ja', split='test') remove_columns = [col for col in test_dataset.column_names if col not in ['audio', 'sentence']] test_dataset = test_dataset.remove_columns(remove_columns) # resample def process_waveforms(batch): speech_arrays = [] sampling_rates = [] for audio_path in batch['audio']: speech_array, _ = torchaudio.load(audio_path['path']) speech_array_resampled = librosa.resample(np.asarray(speech_array[0].numpy()), orig_sr=48000, target_sr=16000) speech_arrays.append(speech_array_resampled) sampling_rates.append(16000) batch["array"] = speech_arrays batch["sampling_rate"] = sampling_rates return batch # hiragana CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"] chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" wakati = MeCab.Tagger("-Owakati") kakasi = pykakasi.kakasi() kakasi.setMode("J","H") kakasi.setMode("K","H") kakasi.setMode("r","Hepburn") conv = kakasi.getConverter() def prepare_char(batch): batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip()) batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip() return batch resampled_eval_dataset = test_dataset.map(process_waveforms, batched=True, batch_size=50, num_proc=4) eval_dataset = resampled_eval_dataset.map(prepare_char, num_proc=4) # begin the evaluation process wer = load("wer") cer = load("cer") def evaluate(batch): inputs = processor(batch["array"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(device), attention_mask=inputs.attention_mask.to(device)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch columns_to_remove = [column for column in eval_dataset.column_names if column != "sentence"] batch_size = 16 result = eval_dataset.map(evaluate, remove_columns=columns_to_remove, batched=True, batch_size=batch_size) wer_result = wer.compute(predictions=result["pred_strings"], references=result["sentence"]) cer_result = cer.compute(predictions=result["pred_strings"], references=result["sentence"]) print("WER: {:2f}%".format(100 * wer_result)) print("CER: {:2f}%".format(100 * cer_result)) ``` ### Test results The final model was evaluated as follows: On uniTKU Dataset: - WER: 19.003370% - CER: 11.027523% On common_voice_11_0: - WER: 27.511982% - CER: 11.563649% ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1+cu118 - Datasets 2.17.1