--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - wer - cer model-index: - name: hubert-base-ser results: [] datasets: - reazon-research/reazonspeech - mozilla-foundation/common_voice_11_0 language: - ja --- # hubert-large-asr This model is a fine-tuned version of [rinna/japanese-hubert-large](https://huggingface.co/rinna/japanese-hubert-large) ASR. Initially fine-tuned on the [Reazonspeech(small) dataset](https://huggingface.co/datasets/reazon-research/reazonspeech), it was subsequently further fine-tuned on the [common_voice_11_0 dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/ja) for ASR tasks. ## Acknowledgments This model's fine-tuning approach was inspired by and references the training methodology used in [vumichien/wav2vec2-large-xlsr-japanese-hiragana](https://huggingface.co/vumichien/wav2vec2-large-xlsr-japanese-hiragana). ## Training procedure The model was fine-tuned in two main stages, first on the Reazonspeech dataset, followed by the common_voice_11_0 dataset. Details of the training steps and results are as follows: ### Training on Reazonspeech The initial fine-tuning on the Reazonspeech(small) dataset was carried out with the following performance metrics: | Step | Training Loss | Validation Loss | WER | |-------|---------------|-----------------|--------| | 1000 | 12.29880 | 3.610288 | 1.00000| | 2000 | 3.601800 | 3.505306 | 1.00000| | 3000 | 2.80300 | 1.948012 | 0.722361| | 4000 | 1.961500 | 1.545842 | 0.558738| | 5000 | 1.712000 | 1.420027 | 0.509049| | 6000 | 1.565500 | 1.235171 | 0.466279| | 7000 | 1.504900 | 1.160565 | 0.461829| | 8000 | 1.409800 | 1.088012 | 0.427435| | 9000 | 1.358800 | 1.097211 | 0.409861| | 10000 | 1.318600 | 1.062294 | 0.403694| | 11000 | 1.258500 | 1.026783 | 0.385464| | 12000 | 1.245100 | 1.024860 | 0.379845| | 13000 | 1.217700 | 0.985201 | 0.375634| | 14000 | 1.187900 | 0.977686 | 0.367163| | 15000 | 1.168100 | 0.978529 | 0.363656| | 16000 | 1.135800 | 0.965668 | 0.363942| | 17000 | 1.140600 | 0.953237 | 0.360912| ### Training on common_voice_11_0 After fine-tuning on Reazonspeech, further fine-tuning was performed on the common_voice_11_0 dataset, leading to the following results: | Step | Training Loss | Validation Loss | WER | |------|---------------|-----------------|--------| | 1000 | 1.08950 | 0.49275 | 0.302035| | 2000 | 0.86100 | 0.45113 | 0.266950| | 3000 | 0.76240 | 0.442281 | 0.244981| | 4000 | 0.70170 | 0.411666 | 0.234287| | 5000 | 0.66400 | 0.411769 | 0.227942| | 6000 | 0.63810 | 0.413067 | 0.225690| ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-4 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 10 - lr_scheduler_type: linear ### Test results The final model was evaluated as follows: On Reazonspeech: - WER: 40.519700% - CER: 23.220979% On common_voice_11_0: - WER: 22.705487% - CER: 9.399390% ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1+cu118 - Datasets 2.17.1