--- license: other license_name: glm-4 license_link: https://huggingface.co/THUDM/glm-4-9b-chat-1m/blob/main/LICENSE language: - zh - en tags: - glm - chatglm - thudm inference: false --- # GLM-4-9B-Chat GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。 在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B 及其人类偏好对齐的版本 GLM-4-9B-Chat 均表现出较高的性能。 除了能进行多轮对话,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K 上下文)等高级功能。 本代模型增加了多语言支持,支持包括日语,韩语,德语在内的 26 种语言。我们还推出了支持 1M 上下文长度(约 200 万中文字符)的模型。 ## 评测结果 我们在一些经典任务上对 GLM-4-9B 模型进行了评测,并得到了如下的结果 ### 典型任务 | Model | AlignBench-v2 | MT-Bench | IFEval | MMLU | C-Eval | GSM8K | MATH | HumanEval | NCB | |:--------------------|:-------------:|:--------:|:------:|:----:|:------:|:-----:|:----:|:---------:|:----:| | Llama-3-8B-Instruct | 5.12 | 8.00 | 68.58 | 68.4 | 51.3 | 79.6 | 30.0 | 62.2 | 24.7 | | ChatGLM3-6B | 3.97 | 5.50 | 28.1 | 66.4 | 69.0 | 72.3 | 25.7 | 58.5 | 11.3 | | GLM-4-9B-Chat | 6.61 | 8.35 | 69.0 | 72.4 | 75.6 | 79.6 | 50.6 | 71.8 | 32.2 | ### 长文本 在 1M 的上下文长度下进行[大海捞针实验](https://github.com/LargeWorldModel/LWM/blob/main/scripts/eval_needle.py),结果如下: ![needle](https://raw.githubusercontent.com/THUDM/GLM-4/main/resources/eval_needle.jpeg?token=GHSAT0AAAAAACSUUZ2ITHVS3CFKKJ7GB7X6ZS7DYOA) 在 LongBench-Chat 上对长文本能力进行了进一步评测,结果如下: ![leaderboard](https://raw.githubusercontent.com/THUDM/GLM-4/main/resources/longbench.png?token=GHSAT0AAAAAACSUUZ2INYRKHOMV7WMPGYRIZS7DZSQ) ### 多语言能力 在六个多语言数据集上对 GLM-4-9B-Chat 和 Llama-3-8B-Instruct 进行了测试,测试结果及数据集对应选取语言如下表 | Dataset | Llama-3-8B-Instruct | GLM-4-9B-Chat | Languages |:------------|:-------------------:|:-------------:|:----------------------------------------------------------------------------------------------:| | M-MMLU | 49.6 | 56.6 | all | FLORES | 25.0 | 28.8 | ru, es, de, fr, it, pt, pl, ja, nl, ar, tr, cs, vi, fa, hu, el, ro, sv, uk, fi, ko, da, bg, no | MGSM | 54.0 | 65.3 | zh, en, bn, de, es, fr, ja, ru, sw, te, th | XWinograd | 61.7 | 73.1 | zh, en, fr, jp, ru, pt | XStoryCloze | 84.7 | 90.7 | zh, en, ar, es, eu, hi, id, my, ru, sw, te | XCOPA | 73.3 | 80.1 | zh, et, ht, id, it, qu, sw, ta, th, tr, vi ### 工具调用能力 我们在 [Berkeley Function Calling Leaderboard](https://github.com/ShishirPatil/gorilla/tree/main/berkeley-function-call-leaderboard)上进行了测试并得到了以下结果: | Model | Overall Acc. | AST Summary | Exec Summary | Relevance | |:-----------------------|:------------:|:-----------:|:------------:|:---------:| | Llama-3-8B-Instruct | 58.88 | 59.25 | 70.01 | 45.83 | | gpt-4-turbo-2024-04-09 | 81.24 | 82.14 | 78.61 | 88.75 | | ChatGLM3-6B | 57.88 | 62.18 | 69.78 | 5.42 | | GLM-4-9B-Chat | 81.00 | 80.26 | 84.40 | 87.92 | **本仓库是 GLM-4-9B-Chat-1M 的模型仓库,支持`1M`上下文长度。** ## 运行模型 使用 transformers 后端进行推理: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat-1m",trust_remote_code=True) query = "你好" inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}], add_generation_prompt=True, tokenize=True, return_tensors="pt", return_dict=True ) inputs = inputs.to(device) model = AutoModelForCausalLM.from_pretrained( "THUDM/glm-4-9b-chat", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True ).to(device).eval() gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1} with torch.no_grad(): outputs = model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs['input_ids'].shape[1]:] print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 使用 VLLM后端进行推理: ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams # GLM-4-9B-Chat-1M # max_model_len, tp_size = 1048576, 4 # GLM-4-9B-Chat max_model_len, tp_size = 131072, 1 model_name = "THUDM/glm-4-9b-chat" prompt = '你好' tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) llm = LLM( model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True, # GLM-4-9B-Chat-1M 如果遇见 OOM 现象,建议开启下述参数 # enable_chunked_prefill=True, # max_num_batched_tokens=8192 ) stop_token_ids = [151329, 151336, 151338] sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids) inputs = tokenizer.build_chat_input(prompt, history=None, role='user')['input_ids'].tolist() outputs = llm.generate(prompt_token_ids=inputs, sampling_params=sampling_params) generated_text = [output.outputs[0].text for output in outputs] print(generated_text) ``` ## 协议 GLM-4 模型的权重的使用则需要遵循 [LICENSE](LICENSE)。 Rhe use of the GLM-4 model weights needs to comply with the [LICENSE](LICENSE). ## 引用 如果你觉得我们的工作有帮助的话,请考虑引用下列论文。 ``` @article{zeng2022glm, title={Glm-130b: An open bilingual pre-trained model}, author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others}, journal={arXiv preprint arXiv:2210.02414}, year={2022} } ``` ``` @inproceedings{du2022glm, title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling}, author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, pages={320--335}, year={2022} } ```