File size: 7,517 Bytes
a3d3fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
from torch import nn
from argparse import Namespace
import torch.nn.functional as F
from transformers.activations import ACT2FN
import math

def standard_attention(query_layer, key_layer, value_layer, scaling_attention_score=True):
    if scaling_attention_score:
        query_layer = query_layer / math.sqrt(query_layer.shape[-1])
    attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

    attention_probs = F.softmax(attention_scores, dim=-1)

    context_layer = torch.matmul(attention_probs, value_layer)
    return context_layer

def attention_fn_default(query_layer, key_layer, value_layer, scaling_attention_score=True):
    # expand head dim to query dim, if necessary
    # only useful for multi-query attention
    batch_size, num_query_heads = query_layer.shape[:2] # [b, np, s, hn]
    num_kv_heads = key_layer.shape[1] # [b, np, s, hn]
    key_layer = key_layer.unsqueeze(2).expand(-1, -1, num_query_heads//num_kv_heads, -1, -1).contiguous().view(batch_size, num_query_heads, *key_layer.shape[2:])
    value_layer = value_layer.unsqueeze(2).expand(-1, -1, num_query_heads//num_kv_heads, -1, -1).contiguous().view(batch_size, num_query_heads, *value_layer.shape[2:])

    if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score:
        # Pytorch 2.0 attention uses very much memory if attention_mask is float, and has NaN bug if attention_mask is None.
        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_layer, key_layer, value_layer, 
            attn_mask=None,
            dropout_p=0.,
            is_causal=False
        )
        return attn_output
    else:
        return standard_attention(
            query_layer, key_layer, value_layer, scaling_attention_score=scaling_attention_score
        )

class PatchEmbedding(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.proj = nn.Conv2d(config.in_channels, config.hidden_size, kernel_size=config.patch_size, stride=config.patch_size)
        self.cls_embedding = nn.Parameter(torch.zeros(1, config.hidden_size))
        self.position_embedding = nn.Embedding(config.num_positions, config.hidden_size)

    def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
        x = self.proj(images)
        x = x.flatten(2).transpose(1, 2)
        cls_token = self.cls_embedding.expand(x.shape[0], -1, -1)
        x = torch.cat((cls_token, x), dim=1)
        x += self.position_embedding.weight.unsqueeze(0)
        return x


class Attention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.num_heads = config.num_heads
        head_dim = config.hidden_size // config.num_heads
        self.scale = head_dim ** -0.5
        self.query_key_value = nn.Linear(config.hidden_size, config.hidden_size * 3)
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.output_dropout = torch.nn.Dropout(config.dropout_prob)

    def forward(self, x: "tensor(B, L, D)") -> "tensor(B, L, D)":
        B, L, _ = x.shape
        qkv = self.query_key_value(x)
        qkv = qkv.reshape(B, L, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)  # 3, B, H, L, D
        q, k, v = qkv[0], qkv[1], qkv[2]

        out = attention_fn_default(
            q, k, v
        ) #  24 x 3 x 
        out = out.transpose(2, 1)
        # breakpoint()
        # output = self.dense(out.reshape(B, L, -1))
        output = self.dense(out.view(B, L, -1))
        output = self.output_dropout(output)
        return output

    def attention(self, q, k, v):
        attn_weights = torch.matmul(q * self.scale, k.transpose(-2, -1))
        attn_weights = attn_weights.softmax(dim=-1)
        output = torch.matmul(attn_weights, v)
        return output


class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.activation_fn = ACT2FN[config.hidden_act]
        self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
        self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.fc1(x)
        x = self.activation_fn(x)
        x = self.fc2(x)
        return x


class TransformerLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.attention = Attention(config)
        self.mlp = MLP(config)
        self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states):
        attention_input = hidden_states
        attention_output = self.input_layernorm(self.attention(attention_input))
        hidden_states = attention_input + attention_output
        mlp_input = hidden_states
        mlp_output = self.post_attention_layernorm(self.mlp(mlp_input))
        output = mlp_input + mlp_output
        return output


class Transformer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.layers = nn.ModuleList([TransformerLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(self, hidden_states):
        for layer_module in self.layers:
            hidden_states = layer_module(hidden_states)
        return hidden_states


class GLU(nn.Module):
    def __init__(self, config, in_features):
        super().__init__()
        self.linear_proj = nn.Linear(in_features, config.hidden_size, bias=False)
        self.norm1 = nn.LayerNorm(config.hidden_size)
        self.act1 = nn.GELU()
        self.act2 = nn.functional.silu
        self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
        self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
        self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)

    def forward(self, x):
        x = self.linear_proj(x)
        x = self.act1(self.norm1(x))
        x = self.act2(self.gate_proj(x)) * self.dense_h_to_4h(x)
        x = self.dense_4h_to_h(x)
        return x


class EVA2CLIPModel(nn.Module):
    def __init__(self, config):
        super().__init__()
        vision_config = Namespace(**config.vision_config)
        self.patch_embedding = PatchEmbedding(vision_config)
        self.transformer = Transformer(vision_config)
        self.linear_proj = GLU(config, in_features=vision_config.hidden_size)
        self.conv = nn.Conv2d(in_channels=vision_config.hidden_size, out_channels=vision_config.hidden_size, kernel_size=2, stride=2)
        self.boi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
        self.eoi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))

    def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
        x = self.patch_embedding(images)
        x = self.transformer(x)
        x = x[:, 1:]
        b, s, h = x.shape
        grid_size = int(s**0.5)
        x = x.view(b, grid_size, grid_size, h).permute(0, 3, 1, 2)
        x = self.conv(x)

        x = x.flatten(2).transpose(1, 2)
        x = self.linear_proj(x)
        boi = self.boi.expand(x.shape[0], -1, -1)
        eoi = self.eoi.expand(x.shape[0], -1, -1)
        x = torch.cat((boi, x, eoi), dim=1)
        return x