nielsr HF staff commited on
Commit
5d66e7a
1 Parent(s): 9fb97ac

Add print statements

Browse files
Files changed (1) hide show
  1. modeling_cogvlm.py +41 -35
modeling_cogvlm.py CHANGED
@@ -456,6 +456,7 @@ class CogVLMModel(CogVLMPreTrainedModel):
456
  output_attentions: Optional[bool] = None,
457
  output_hidden_states: Optional[bool] = None,
458
  return_dict: Optional[bool] = None,
 
459
  ) -> Union[Tuple, BaseModelOutputWithPast]:
460
  """take care of image_encode, token_type_ids, position_ids and (attention_mask = None is fine)"""
461
 
@@ -527,6 +528,7 @@ class CogVLMModel(CogVLMPreTrainedModel):
527
  output_attentions=output_attentions,
528
  output_hidden_states=output_hidden_states,
529
  return_dict=return_dict,
 
530
  )
531
 
532
  def llm_forward(
@@ -541,6 +543,7 @@ class CogVLMModel(CogVLMPreTrainedModel):
541
  output_attentions: Optional[bool] = None,
542
  output_hidden_states: Optional[bool] = None,
543
  return_dict: Optional[bool] = None,
 
544
  ) -> Union[Tuple, BaseModelOutputWithPast]:
545
  """largely copy from llama forward and adapt for cogvlm with `token_type_ids`"""
546
  output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
@@ -590,41 +593,42 @@ class CogVLMModel(CogVLMPreTrainedModel):
590
 
591
  hidden_states = inputs_embeds
592
 
593
- # torch.save(hidden_states, "initial_hidden_states.pt")
594
- # torch.save(attention_mask, "initial_attention_mask.pt")
595
- # torch.save(token_type_ids, "initial_token_type_ids.pt")
596
- # torch.save(position_ids, "initial_position_ids.pt")
597
-
598
- # from huggingface_hub import HfApi
599
-
600
- # api = HfApi()
601
- # api.upload_file(
602
- # path_or_fileobj="initial_hidden_states.pt",
603
- # path_in_repo="initial_hidden_states.pt",
604
- # repo_id="nielsr/test-cogvlm",
605
- # repo_type="dataset",
606
- # )
607
- # api = HfApi()
608
- # api.upload_file(
609
- # path_or_fileobj="initial_attention_mask.pt",
610
- # path_in_repo="initial_attention_mask.pt",
611
- # repo_id="nielsr/test-cogvlm",
612
- # repo_type="dataset",
613
- # )
614
- # api = HfApi()
615
- # api.upload_file(
616
- # path_or_fileobj="initial_token_type_ids.pt",
617
- # path_in_repo="initial_token_type_ids.pt",
618
- # repo_id="nielsr/test-cogvlm",
619
- # repo_type="dataset",
620
- # )
621
- # api = HfApi()
622
- # api.upload_file(
623
- # path_or_fileobj="initial_position_ids.pt",
624
- # path_in_repo="initial_position_ids.pt",
625
- # repo_id="nielsr/test-cogvlm",
626
- # repo_type="dataset",
627
- # )
 
628
 
629
  # decoder layers
630
  all_hidden_states = () if output_hidden_states else None
@@ -774,6 +778,7 @@ class CogVLMForCausalLM(CogVLMPreTrainedModel):
774
  output_hidden_states: Optional[bool] = None,
775
  return_dict: Optional[bool] = None,
776
  labels: Optional[torch.LongTensor] = None,
 
777
  ) -> Union[Tuple, CausalLMOutputWithPast]:
778
  output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
779
  output_hidden_states = (
@@ -794,6 +799,7 @@ class CogVLMForCausalLM(CogVLMPreTrainedModel):
794
  output_attentions=output_attentions,
795
  output_hidden_states=output_hidden_states,
796
  return_dict=return_dict,
 
797
  )
798
 
799
  hidden_states = outputs[0]
 
456
  output_attentions: Optional[bool] = None,
457
  output_hidden_states: Optional[bool] = None,
458
  return_dict: Optional[bool] = None,
459
+ step: int = None,
460
  ) -> Union[Tuple, BaseModelOutputWithPast]:
461
  """take care of image_encode, token_type_ids, position_ids and (attention_mask = None is fine)"""
462
 
 
528
  output_attentions=output_attentions,
529
  output_hidden_states=output_hidden_states,
530
  return_dict=return_dict,
531
+ step=step,
532
  )
533
 
534
  def llm_forward(
 
543
  output_attentions: Optional[bool] = None,
544
  output_hidden_states: Optional[bool] = None,
545
  return_dict: Optional[bool] = None,
546
+ step: int = None,
547
  ) -> Union[Tuple, BaseModelOutputWithPast]:
548
  """largely copy from llama forward and adapt for cogvlm with `token_type_ids`"""
549
  output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
 
593
 
594
  hidden_states = inputs_embeds
595
 
596
+ if step == 1:
597
+ torch.save(hidden_states, "hidden_states_step_1.pt")
598
+ torch.save(attention_mask, "attention_mask_step_1.pt")
599
+ torch.save(token_type_ids, "token_type_ids_step_1.pt")
600
+ torch.save(position_ids, "position_ids_step_1.pt")
601
+
602
+ from huggingface_hub import HfApi
603
+
604
+ api = HfApi()
605
+ api.upload_file(
606
+ path_or_fileobj="hidden_states_step_1.pt",
607
+ path_in_repo="hidden_states_step_1.pt",
608
+ repo_id="nielsr/test-cogvlm",
609
+ repo_type="dataset",
610
+ )
611
+ api = HfApi()
612
+ api.upload_file(
613
+ path_or_fileobj="attention_mask_step_1.pt",
614
+ path_in_repo="attention_mask_step_1.pt",
615
+ repo_id="nielsr/test-cogvlm",
616
+ repo_type="dataset",
617
+ )
618
+ api = HfApi()
619
+ api.upload_file(
620
+ path_or_fileobj="token_type_ids_step_1.pt",
621
+ path_in_repo="token_type_ids_step_1.pt",
622
+ repo_id="nielsr/test-cogvlm",
623
+ repo_type="dataset",
624
+ )
625
+ api = HfApi()
626
+ api.upload_file(
627
+ path_or_fileobj="position_ids_step_1.pt",
628
+ path_in_repo="position_ids_step_1.pt",
629
+ repo_id="nielsr/test-cogvlm",
630
+ repo_type="dataset",
631
+ )
632
 
633
  # decoder layers
634
  all_hidden_states = () if output_hidden_states else None
 
778
  output_hidden_states: Optional[bool] = None,
779
  return_dict: Optional[bool] = None,
780
  labels: Optional[torch.LongTensor] = None,
781
+ step: int = None,
782
  ) -> Union[Tuple, CausalLMOutputWithPast]:
783
  output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
784
  output_hidden_states = (
 
799
  output_attentions=output_attentions,
800
  output_hidden_states=output_hidden_states,
801
  return_dict=return_dict,
802
+ step=step,
803
  )
804
 
805
  hidden_states = outputs[0]