Sync with chatglm-6b
Browse files- configuration_chatglm.py +7 -2
- modeling_chatglm.py +231 -113
- quantization.py +13 -10
- tokenization_chatglm.py +105 -12
configuration_chatglm.py
CHANGED
@@ -72,6 +72,8 @@ class ChatGLMConfig(PretrainedConfig):
|
|
72 |
position_encoding_2d=True,
|
73 |
quantization_bit=0,
|
74 |
quantization_embeddings=False,
|
|
|
|
|
75 |
**kwargs
|
76 |
):
|
77 |
self.num_layers = num_layers
|
@@ -86,8 +88,11 @@ class ChatGLMConfig(PretrainedConfig):
|
|
86 |
self.eos_token_id = eos_token_id
|
87 |
self.pad_token_id = pad_token_id
|
88 |
self.position_encoding_2d = position_encoding_2d
|
89 |
-
self.quantization_bit=quantization_bit
|
90 |
-
self.quantization_embeddings=quantization_embeddings
|
|
|
|
|
|
|
91 |
super().__init__(
|
92 |
pad_token_id=pad_token_id,
|
93 |
bos_token_id=bos_token_id,
|
|
|
72 |
position_encoding_2d=True,
|
73 |
quantization_bit=0,
|
74 |
quantization_embeddings=False,
|
75 |
+
pre_seq_len=None,
|
76 |
+
prefix_projection=False,
|
77 |
**kwargs
|
78 |
):
|
79 |
self.num_layers = num_layers
|
|
|
88 |
self.eos_token_id = eos_token_id
|
89 |
self.pad_token_id = pad_token_id
|
90 |
self.position_encoding_2d = position_encoding_2d
|
91 |
+
self.quantization_bit = quantization_bit
|
92 |
+
self.quantization_embeddings = quantization_embeddings
|
93 |
+
self.pre_seq_len = pre_seq_len
|
94 |
+
self.prefix_projection = prefix_projection
|
95 |
+
|
96 |
super().__init__(
|
97 |
pad_token_id=pad_token_id,
|
98 |
bos_token_id=bos_token_id,
|
modeling_chatglm.py
CHANGED
@@ -5,6 +5,7 @@ import copy
|
|
5 |
import os
|
6 |
import warnings
|
7 |
import re
|
|
|
8 |
|
9 |
import torch
|
10 |
import torch.utils.checkpoint
|
@@ -12,7 +13,7 @@ import torch.nn.functional as F
|
|
12 |
from torch import nn
|
13 |
from torch.nn import CrossEntropyLoss, LayerNorm
|
14 |
from torch.nn.utils import skip_init
|
15 |
-
from typing import Optional, Tuple, Union, List, Callable
|
16 |
|
17 |
from transformers.utils import (
|
18 |
add_code_sample_docstrings,
|
@@ -27,16 +28,18 @@ from transformers.modeling_outputs import (
|
|
27 |
from transformers.modeling_utils import PreTrainedModel
|
28 |
from transformers.utils import logging
|
29 |
from transformers.generation.logits_process import LogitsProcessor
|
30 |
-
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig
|
31 |
|
32 |
from .configuration_chatglm import ChatGLMConfig
|
33 |
|
34 |
|
35 |
# flags required to enable jit fusion kernels
|
36 |
-
|
37 |
-
|
38 |
-
torch._C.
|
39 |
-
torch._C.
|
|
|
|
|
40 |
|
41 |
logger = logging.get_logger(__name__)
|
42 |
|
@@ -131,6 +134,36 @@ def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path):
|
|
131 |
return model
|
132 |
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
@torch.jit.script
|
135 |
def gelu_impl(x):
|
136 |
"""OpenAI's gelu implementation."""
|
@@ -219,7 +252,7 @@ def attention_fn(
|
|
219 |
use_cache=False,
|
220 |
):
|
221 |
if layer_past is not None:
|
222 |
-
past_key, past_value = layer_past
|
223 |
key_layer = torch.cat((past_key, key_layer), dim=0)
|
224 |
value_layer = torch.cat((past_value, value_layer), dim=0)
|
225 |
|
@@ -273,7 +306,7 @@ def attention_fn(
|
|
273 |
if not (attention_mask == 0).all():
|
274 |
# if auto-regressive, skip
|
275 |
attention_scores.masked_fill_(attention_mask, -10000.0)
|
276 |
-
dtype = attention_scores.
|
277 |
attention_scores = attention_scores.float()
|
278 |
attention_scores = attention_scores * query_key_layer_scaling_coeff
|
279 |
|
@@ -619,10 +652,10 @@ class ChatGLMPreTrainedModel(PreTrainedModel):
|
|
619 |
"""
|
620 |
|
621 |
is_parallelizable = False
|
622 |
-
supports_gradient_checkpointing =
|
623 |
config_class = ChatGLMConfig
|
624 |
base_model_prefix = "transformer"
|
625 |
-
_no_split_modules = ["
|
626 |
|
627 |
def __init__(self, *inputs, **kwargs):
|
628 |
super().__init__(*inputs, **kwargs)
|
@@ -631,6 +664,43 @@ class ChatGLMPreTrainedModel(PreTrainedModel):
|
|
631 |
"""Initialize the weights."""
|
632 |
return
|
633 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
634 |
|
635 |
CHATGLM_6B_START_DOCSTRING = r"""
|
636 |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
|
@@ -727,12 +797,15 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
727 |
self.inner_hidden_size = config.inner_hidden_size
|
728 |
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
729 |
self.position_encoding_2d = config.position_encoding_2d
|
|
|
|
|
730 |
|
731 |
self.word_embeddings = skip_init(
|
732 |
torch.nn.Embedding,
|
733 |
num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,
|
734 |
dtype=self.params_dtype
|
735 |
)
|
|
|
736 |
|
737 |
def get_layer(layer_id):
|
738 |
return GLMBlock(
|
@@ -755,43 +828,38 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
755 |
# Final layer norm before output.
|
756 |
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
|
757 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
758 |
def get_input_embeddings(self):
|
759 |
return self.word_embeddings
|
760 |
|
761 |
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
762 |
self.word_embeddings = new_embeddings
|
763 |
|
764 |
-
def
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
780 |
-
if not gmask:
|
781 |
-
position_ids[seq_length:] = mask_position
|
782 |
-
block_position_ids = torch.cat((
|
783 |
-
torch.zeros(seq_length, dtype=torch.long, device=device),
|
784 |
-
torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1
|
785 |
-
))
|
786 |
-
position_ids = torch.stack((position_ids, block_position_ids), dim=0)
|
787 |
-
else:
|
788 |
-
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
789 |
-
if not gmask:
|
790 |
-
position_ids[context_length - 1:] = mask_position
|
791 |
-
|
792 |
-
position_ids = position_ids.unsqueeze(0)
|
793 |
-
|
794 |
-
return position_ids
|
795 |
|
796 |
@add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
797 |
@add_code_sample_docstrings(
|
@@ -819,6 +887,13 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
819 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
820 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
821 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
822 |
if input_ids is not None and inputs_embeds is not None:
|
823 |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
824 |
elif input_ids is not None:
|
@@ -828,31 +903,41 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
828 |
else:
|
829 |
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
830 |
|
|
|
|
|
|
|
831 |
if past_key_values is None:
|
832 |
-
|
833 |
-
|
|
|
|
|
|
|
834 |
|
835 |
if attention_mask is None:
|
836 |
attention_mask = self.get_masks(
|
837 |
-
|
838 |
device=input_ids.device
|
839 |
)
|
840 |
|
|
|
841 |
if position_ids is None:
|
842 |
MASK, gMASK = 150000, 150001
|
843 |
mask_token = MASK if MASK in input_ids else gMASK
|
844 |
use_gmask = False if MASK in input_ids else gMASK
|
845 |
|
846 |
-
|
847 |
position_ids = self.get_position_ids(
|
848 |
-
|
849 |
-
|
850 |
device=input_ids.device,
|
851 |
gmask=use_gmask
|
852 |
)
|
853 |
|
854 |
-
if
|
855 |
-
|
|
|
|
|
|
|
856 |
|
857 |
# [seq_len, batch, hidden_size]
|
858 |
hidden_states = inputs_embeds.transpose(0, 1)
|
@@ -861,11 +946,6 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
861 |
all_self_attentions = () if output_attentions else None
|
862 |
all_hidden_states = () if output_hidden_states else None
|
863 |
|
864 |
-
seq_length_with_past = seq_length
|
865 |
-
past_key_values_length = 0
|
866 |
-
if past_key_values[0] is not None:
|
867 |
-
past_key_values_length = past_key_values[0][0].shape[0]
|
868 |
-
seq_length_with_past = seq_length_with_past + past_key_values_length
|
869 |
if attention_mask is None:
|
870 |
attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
|
871 |
|
@@ -876,16 +956,29 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
876 |
|
877 |
if output_hidden_states:
|
878 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
889 |
|
890 |
hidden_states = layer_ret[0]
|
891 |
|
@@ -946,31 +1039,40 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
946 |
def set_output_embeddings(self, new_embeddings):
|
947 |
self.lm_head = new_embeddings
|
948 |
|
949 |
-
def
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
|
|
|
|
|
|
|
|
|
|
955 |
|
956 |
-
|
957 |
-
|
958 |
-
|
959 |
-
if not
|
960 |
-
|
961 |
-
|
962 |
-
|
963 |
-
|
964 |
-
|
965 |
-
|
966 |
-
|
967 |
-
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
968 |
-
if not gmask:
|
969 |
-
position_ids[context_length - 1:] = mask_position
|
970 |
|
971 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
972 |
|
973 |
-
return
|
974 |
|
975 |
def prepare_inputs_for_generation(
|
976 |
self,
|
@@ -978,27 +1080,34 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
978 |
past: Optional[torch.Tensor] = None,
|
979 |
past_key_values: Optional[torch.Tensor] = None,
|
980 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
981 |
**kwargs
|
982 |
) -> dict:
|
983 |
-
|
984 |
MASK, gMASK = 150000, 150001
|
985 |
mask_token = MASK if MASK in input_ids else gMASK
|
986 |
use_gmask = False if MASK in input_ids else gMASK
|
987 |
-
|
988 |
-
|
989 |
-
|
990 |
-
if mask_token not in seq:
|
991 |
-
raise ValueError("You have to add either [MASK] or [gMASK] in your input")
|
992 |
|
993 |
# only last token for input_ids if past is not None
|
994 |
if past is not None or past_key_values is not None:
|
995 |
-
context_length = seq.index(self.config.bos_token_id)
|
996 |
last_token = input_ids[:, -1].unsqueeze(-1)
|
997 |
-
if
|
998 |
-
|
999 |
-
device=input_ids.device)
|
1000 |
else:
|
1001 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1002 |
|
1003 |
if past is None:
|
1004 |
past = past_key_values
|
@@ -1006,15 +1115,24 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
1006 |
"input_ids": last_token,
|
1007 |
"past_key_values": past,
|
1008 |
"position_ids": position_ids,
|
|
|
1009 |
}
|
1010 |
else:
|
1011 |
-
attention_mask
|
1012 |
-
|
1013 |
-
|
1014 |
-
|
1015 |
-
|
1016 |
-
|
1017 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1018 |
|
1019 |
return {
|
1020 |
"input_ids": input_ids,
|
@@ -1063,7 +1181,7 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
1063 |
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1064 |
shift_labels = labels[..., 1:].contiguous()
|
1065 |
# Flatten the tokens
|
1066 |
-
loss_fct = CrossEntropyLoss()
|
1067 |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1068 |
|
1069 |
lm_logits = lm_logits.to(hidden_states.dtype)
|
@@ -1132,10 +1250,10 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
1132 |
for i, (old_query, response) in enumerate(history):
|
1133 |
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
1134 |
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
1135 |
-
|
1136 |
-
|
1137 |
-
outputs = self.generate(**
|
1138 |
-
outputs = outputs.tolist()[0][len(
|
1139 |
response = tokenizer.decode(outputs)
|
1140 |
response = self.process_response(response)
|
1141 |
history = history + [(query, response)]
|
@@ -1158,10 +1276,10 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
1158 |
for i, (old_query, response) in enumerate(history):
|
1159 |
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
1160 |
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
1161 |
-
|
1162 |
-
|
1163 |
-
for outputs in self.stream_generate(**
|
1164 |
-
outputs = outputs.tolist()[0][len(
|
1165 |
response = tokenizer.decode(outputs)
|
1166 |
response = self.process_response(response)
|
1167 |
new_history = history + [(query, response)]
|
|
|
5 |
import os
|
6 |
import warnings
|
7 |
import re
|
8 |
+
import sys
|
9 |
|
10 |
import torch
|
11 |
import torch.utils.checkpoint
|
|
|
13 |
from torch import nn
|
14 |
from torch.nn import CrossEntropyLoss, LayerNorm
|
15 |
from torch.nn.utils import skip_init
|
16 |
+
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
|
17 |
|
18 |
from transformers.utils import (
|
19 |
add_code_sample_docstrings,
|
|
|
28 |
from transformers.modeling_utils import PreTrainedModel
|
29 |
from transformers.utils import logging
|
30 |
from transformers.generation.logits_process import LogitsProcessor
|
31 |
+
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
|
32 |
|
33 |
from .configuration_chatglm import ChatGLMConfig
|
34 |
|
35 |
|
36 |
# flags required to enable jit fusion kernels
|
37 |
+
|
38 |
+
if sys.platform != 'darwin':
|
39 |
+
torch._C._jit_set_profiling_mode(False)
|
40 |
+
torch._C._jit_set_profiling_executor(False)
|
41 |
+
torch._C._jit_override_can_fuse_on_cpu(True)
|
42 |
+
torch._C._jit_override_can_fuse_on_gpu(True)
|
43 |
|
44 |
logger = logging.get_logger(__name__)
|
45 |
|
|
|
134 |
return model
|
135 |
|
136 |
|
137 |
+
class PrefixEncoder(torch.nn.Module):
|
138 |
+
"""
|
139 |
+
The torch.nn model to encode the prefix
|
140 |
+
Input shape: (batch-size, prefix-length)
|
141 |
+
Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
142 |
+
"""
|
143 |
+
|
144 |
+
def __init__(self, config):
|
145 |
+
super().__init__()
|
146 |
+
self.prefix_projection = config.prefix_projection
|
147 |
+
if self.prefix_projection:
|
148 |
+
# Use a two-layer MLP to encode the prefix
|
149 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size)
|
150 |
+
self.trans = torch.nn.Sequential(
|
151 |
+
torch.nn.Linear(config.hidden_size, config.hidden_size),
|
152 |
+
torch.nn.Tanh(),
|
153 |
+
torch.nn.Linear(config.hidden_size, config.num_layers * config.hidden_size * 2)
|
154 |
+
)
|
155 |
+
else:
|
156 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_layers * config.hidden_size * 2)
|
157 |
+
|
158 |
+
def forward(self, prefix: torch.Tensor):
|
159 |
+
if self.prefix_projection:
|
160 |
+
prefix_tokens = self.embedding(prefix)
|
161 |
+
past_key_values = self.trans(prefix_tokens)
|
162 |
+
else:
|
163 |
+
past_key_values = self.embedding(prefix)
|
164 |
+
return past_key_values
|
165 |
+
|
166 |
+
|
167 |
@torch.jit.script
|
168 |
def gelu_impl(x):
|
169 |
"""OpenAI's gelu implementation."""
|
|
|
252 |
use_cache=False,
|
253 |
):
|
254 |
if layer_past is not None:
|
255 |
+
past_key, past_value = layer_past[0], layer_past[1]
|
256 |
key_layer = torch.cat((past_key, key_layer), dim=0)
|
257 |
value_layer = torch.cat((past_value, value_layer), dim=0)
|
258 |
|
|
|
306 |
if not (attention_mask == 0).all():
|
307 |
# if auto-regressive, skip
|
308 |
attention_scores.masked_fill_(attention_mask, -10000.0)
|
309 |
+
dtype = attention_scores.dtype
|
310 |
attention_scores = attention_scores.float()
|
311 |
attention_scores = attention_scores * query_key_layer_scaling_coeff
|
312 |
|
|
|
652 |
"""
|
653 |
|
654 |
is_parallelizable = False
|
655 |
+
supports_gradient_checkpointing = True
|
656 |
config_class = ChatGLMConfig
|
657 |
base_model_prefix = "transformer"
|
658 |
+
_no_split_modules = ["GLMBlock"]
|
659 |
|
660 |
def __init__(self, *inputs, **kwargs):
|
661 |
super().__init__(*inputs, **kwargs)
|
|
|
664 |
"""Initialize the weights."""
|
665 |
return
|
666 |
|
667 |
+
def get_masks(self, input_ids, device):
|
668 |
+
batch_size, seq_length = input_ids.shape
|
669 |
+
context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
|
670 |
+
attention_mask = torch.ones((batch_size, seq_length, seq_length), device=device)
|
671 |
+
attention_mask.tril_()
|
672 |
+
for i, context_length in enumerate(context_lengths):
|
673 |
+
attention_mask[i, :, :context_length] = 1
|
674 |
+
attention_mask.unsqueeze_(1)
|
675 |
+
attention_mask = (attention_mask < 0.5).bool()
|
676 |
+
|
677 |
+
return attention_mask
|
678 |
+
|
679 |
+
def get_position_ids(self, input_ids, mask_positions, device, gmask=False):
|
680 |
+
batch_size, seq_length = input_ids.shape
|
681 |
+
context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
|
682 |
+
if self.position_encoding_2d:
|
683 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).expand(batch_size, seq_length)
|
684 |
+
for i, context_length in enumerate(context_lengths):
|
685 |
+
position_ids[i, context_length:] = mask_positions[i]
|
686 |
+
block_position_ids = [torch.cat((
|
687 |
+
torch.zeros(context_length, dtype=torch.long, device=device),
|
688 |
+
torch.arange(seq_length - context_length, dtype=torch.long, device=device) + 1
|
689 |
+
)) for context_length in context_lengths]
|
690 |
+
block_position_ids = torch.stack(block_position_ids, dim=0)
|
691 |
+
position_ids = torch.stack((position_ids, block_position_ids), dim=1)
|
692 |
+
else:
|
693 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).expand(batch_size, seq_length)
|
694 |
+
if not gmask:
|
695 |
+
for i, context_length in enumerate(context_lengths):
|
696 |
+
position_ids[context_length:] = mask_positions[i]
|
697 |
+
|
698 |
+
return position_ids
|
699 |
+
|
700 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
701 |
+
if isinstance(module, ChatGLMModel):
|
702 |
+
module.gradient_checkpointing = value
|
703 |
+
|
704 |
|
705 |
CHATGLM_6B_START_DOCSTRING = r"""
|
706 |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
|
|
|
797 |
self.inner_hidden_size = config.inner_hidden_size
|
798 |
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
799 |
self.position_encoding_2d = config.position_encoding_2d
|
800 |
+
self.pre_seq_len = config.pre_seq_len
|
801 |
+
self.prefix_projection = config.prefix_projection
|
802 |
|
803 |
self.word_embeddings = skip_init(
|
804 |
torch.nn.Embedding,
|
805 |
num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,
|
806 |
dtype=self.params_dtype
|
807 |
)
|
808 |
+
self.gradient_checkpointing = False
|
809 |
|
810 |
def get_layer(layer_id):
|
811 |
return GLMBlock(
|
|
|
828 |
# Final layer norm before output.
|
829 |
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
|
830 |
|
831 |
+
if self.pre_seq_len is not None:
|
832 |
+
for param in self.parameters():
|
833 |
+
param.requires_grad = False
|
834 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
835 |
+
self.prefix_encoder = PrefixEncoder(config)
|
836 |
+
self.dropout = torch.nn.Dropout(0.1)
|
837 |
+
|
838 |
+
# total_params = sum(p.numel() for p in self.parameters())
|
839 |
+
# trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
|
840 |
+
# print("Using p-tuning v2: # trainable_params = {} / {}".format(trainable_params, total_params))
|
841 |
+
|
842 |
def get_input_embeddings(self):
|
843 |
return self.word_embeddings
|
844 |
|
845 |
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
846 |
self.word_embeddings = new_embeddings
|
847 |
|
848 |
+
def get_prompt(self, batch_size, device, dtype=torch.half):
|
849 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
850 |
+
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
|
851 |
+
past_key_values = past_key_values.view(
|
852 |
+
batch_size,
|
853 |
+
self.pre_seq_len,
|
854 |
+
self.num_layers * 2,
|
855 |
+
self.num_attention_heads,
|
856 |
+
self.hidden_size // self.num_attention_heads
|
857 |
+
)
|
858 |
+
# seq_len, b, nh, hidden_size
|
859 |
+
past_key_values = self.dropout(past_key_values)
|
860 |
+
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
|
861 |
+
# past_key_values = [(v[0], v[1]) for v in past_key_values]
|
862 |
+
return past_key_values
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
863 |
|
864 |
@add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
865 |
@add_code_sample_docstrings(
|
|
|
887 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
888 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
889 |
|
890 |
+
if self.gradient_checkpointing and self.training:
|
891 |
+
if use_cache:
|
892 |
+
logger.warning_once(
|
893 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
894 |
+
)
|
895 |
+
use_cache = False
|
896 |
+
|
897 |
if input_ids is not None and inputs_embeds is not None:
|
898 |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
899 |
elif input_ids is not None:
|
|
|
903 |
else:
|
904 |
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
905 |
|
906 |
+
if inputs_embeds is None:
|
907 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
908 |
+
|
909 |
if past_key_values is None:
|
910 |
+
if self.pre_seq_len is not None:
|
911 |
+
past_key_values = self.get_prompt(batch_size=input_ids.shape[0], device=input_ids.device,
|
912 |
+
dtype=inputs_embeds.dtype)
|
913 |
+
else:
|
914 |
+
past_key_values = tuple([None] * len(self.layers))
|
915 |
|
916 |
if attention_mask is None:
|
917 |
attention_mask = self.get_masks(
|
918 |
+
input_ids,
|
919 |
device=input_ids.device
|
920 |
)
|
921 |
|
922 |
+
|
923 |
if position_ids is None:
|
924 |
MASK, gMASK = 150000, 150001
|
925 |
mask_token = MASK if MASK in input_ids else gMASK
|
926 |
use_gmask = False if MASK in input_ids else gMASK
|
927 |
|
928 |
+
mask_positions = [seq.tolist().index(mask_token) for seq in input_ids]
|
929 |
position_ids = self.get_position_ids(
|
930 |
+
input_ids,
|
931 |
+
mask_positions=mask_positions,
|
932 |
device=input_ids.device,
|
933 |
gmask=use_gmask
|
934 |
)
|
935 |
|
936 |
+
if self.pre_seq_len is not None and attention_mask is not None:
|
937 |
+
prefix_attention_mask = torch.ones(batch_size, 1, input_ids.size(-1), self.pre_seq_len).to(
|
938 |
+
attention_mask.device)
|
939 |
+
prefix_attention_mask = (prefix_attention_mask < 0.5).bool()
|
940 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=3)
|
941 |
|
942 |
# [seq_len, batch, hidden_size]
|
943 |
hidden_states = inputs_embeds.transpose(0, 1)
|
|
|
946 |
all_self_attentions = () if output_attentions else None
|
947 |
all_hidden_states = () if output_hidden_states else None
|
948 |
|
|
|
|
|
|
|
|
|
|
|
949 |
if attention_mask is None:
|
950 |
attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
|
951 |
|
|
|
956 |
|
957 |
if output_hidden_states:
|
958 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
959 |
+
layer_past = past_key_values[i]
|
960 |
+
|
961 |
+
if self.gradient_checkpointing and self.training:
|
962 |
+
layer_ret = torch.utils.checkpoint.checkpoint(
|
963 |
+
layer,
|
964 |
+
hidden_states,
|
965 |
+
position_ids,
|
966 |
+
attention_mask,
|
967 |
+
torch.tensor(i),
|
968 |
+
layer_past,
|
969 |
+
use_cache,
|
970 |
+
output_attentions
|
971 |
+
)
|
972 |
+
else:
|
973 |
+
layer_ret = layer(
|
974 |
+
hidden_states,
|
975 |
+
position_ids=position_ids,
|
976 |
+
attention_mask=attention_mask,
|
977 |
+
layer_id=torch.tensor(i),
|
978 |
+
layer_past=layer_past,
|
979 |
+
use_cache=use_cache,
|
980 |
+
output_attentions=output_attentions
|
981 |
+
)
|
982 |
|
983 |
hidden_states = layer_ret[0]
|
984 |
|
|
|
1039 |
def set_output_embeddings(self, new_embeddings):
|
1040 |
self.lm_head = new_embeddings
|
1041 |
|
1042 |
+
def _update_model_kwargs_for_generation(
|
1043 |
+
self,
|
1044 |
+
outputs: ModelOutput,
|
1045 |
+
model_kwargs: Dict[str, Any],
|
1046 |
+
is_encoder_decoder: bool = False,
|
1047 |
+
standardize_cache_format: bool = False,
|
1048 |
+
) -> Dict[str, Any]:
|
1049 |
+
# update past_key_values
|
1050 |
+
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
1051 |
+
outputs, standardize_cache_format=standardize_cache_format
|
1052 |
+
)
|
1053 |
|
1054 |
+
# update attention mask
|
1055 |
+
if "attention_mask" in model_kwargs:
|
1056 |
+
attention_mask = model_kwargs["attention_mask"]
|
1057 |
+
if attention_mask is not None and attention_mask.dtype == torch.bool:
|
1058 |
+
attention_mask = torch.cat(
|
1059 |
+
[attention_mask, attention_mask.new_ones((*attention_mask.shape[:3], 1))], dim=3)
|
1060 |
+
new_attention_mask = attention_mask[:, :, -1:].clone()
|
1061 |
+
new_attention_mask[..., -1] = False
|
1062 |
+
model_kwargs["attention_mask"] = torch.cat(
|
1063 |
+
[attention_mask, new_attention_mask], dim=2
|
1064 |
+
)
|
|
|
|
|
|
|
1065 |
|
1066 |
+
# update position ids
|
1067 |
+
if "position_ids" in model_kwargs:
|
1068 |
+
position_ids = model_kwargs["position_ids"]
|
1069 |
+
new_position_id = position_ids[..., -1:].clone()
|
1070 |
+
new_position_id[:, 1, :] += 1
|
1071 |
+
model_kwargs["position_ids"] = torch.cat(
|
1072 |
+
[position_ids, new_position_id], dim=-1
|
1073 |
+
)
|
1074 |
|
1075 |
+
return model_kwargs
|
1076 |
|
1077 |
def prepare_inputs_for_generation(
|
1078 |
self,
|
|
|
1080 |
past: Optional[torch.Tensor] = None,
|
1081 |
past_key_values: Optional[torch.Tensor] = None,
|
1082 |
attention_mask: Optional[torch.Tensor] = None,
|
1083 |
+
position_ids: Optional[torch.Tensor] = None,
|
1084 |
**kwargs
|
1085 |
) -> dict:
|
1086 |
+
batch_size, seq_length = input_ids.shape
|
1087 |
MASK, gMASK = 150000, 150001
|
1088 |
mask_token = MASK if MASK in input_ids else gMASK
|
1089 |
use_gmask = False if MASK in input_ids else gMASK
|
1090 |
+
seqs = input_ids.tolist()
|
1091 |
+
mask_positions = [seq.index(mask_token) for seq in seqs]
|
|
|
|
|
|
|
1092 |
|
1093 |
# only last token for input_ids if past is not None
|
1094 |
if past is not None or past_key_values is not None:
|
|
|
1095 |
last_token = input_ids[:, -1].unsqueeze(-1)
|
1096 |
+
if attention_mask is not None and attention_mask.dtype == torch.bool:
|
1097 |
+
attention_mask = attention_mask[:, :, -1:]
|
|
|
1098 |
else:
|
1099 |
+
attention_mask = None
|
1100 |
+
if position_ids is not None:
|
1101 |
+
position_ids = position_ids[..., -1:]
|
1102 |
+
else:
|
1103 |
+
context_lengths = [seq.index(self.config.bos_token_id) for seq in seqs]
|
1104 |
+
if self.position_encoding_2d:
|
1105 |
+
position_ids = torch.tensor(
|
1106 |
+
[[mask_position, seq_length - context_length] for mask_position, context_length in
|
1107 |
+
zip(mask_positions, context_lengths)], dtype=torch.long, device=input_ids.device).unsqueeze(-1)
|
1108 |
+
else:
|
1109 |
+
position_ids = torch.tensor([mask_position for mask_position in mask_positions], dtype=torch.long,
|
1110 |
+
device=input_ids.device).unsqueeze(-1)
|
1111 |
|
1112 |
if past is None:
|
1113 |
past = past_key_values
|
|
|
1115 |
"input_ids": last_token,
|
1116 |
"past_key_values": past,
|
1117 |
"position_ids": position_ids,
|
1118 |
+
"attention_mask": attention_mask
|
1119 |
}
|
1120 |
else:
|
1121 |
+
if attention_mask is not None and attention_mask.dtype != torch.bool:
|
1122 |
+
logger.warning_once(f"The dtype of attention mask ({attention_mask.dtype}) is not bool")
|
1123 |
+
attention_mask = None
|
1124 |
+
if attention_mask is None:
|
1125 |
+
attention_mask = self.get_masks(
|
1126 |
+
input_ids,
|
1127 |
+
device=input_ids.device
|
1128 |
+
)
|
1129 |
+
if position_ids is None:
|
1130 |
+
position_ids = self.get_position_ids(
|
1131 |
+
input_ids,
|
1132 |
+
device=input_ids.device,
|
1133 |
+
mask_positions=mask_positions,
|
1134 |
+
gmask=use_gmask
|
1135 |
+
)
|
1136 |
|
1137 |
return {
|
1138 |
"input_ids": input_ids,
|
|
|
1181 |
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1182 |
shift_labels = labels[..., 1:].contiguous()
|
1183 |
# Flatten the tokens
|
1184 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
1185 |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1186 |
|
1187 |
lm_logits = lm_logits.to(hidden_states.dtype)
|
|
|
1250 |
for i, (old_query, response) in enumerate(history):
|
1251 |
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
1252 |
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
1253 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
1254 |
+
inputs = inputs.to(self.device)
|
1255 |
+
outputs = self.generate(**inputs, **gen_kwargs)
|
1256 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
|
1257 |
response = tokenizer.decode(outputs)
|
1258 |
response = self.process_response(response)
|
1259 |
history = history + [(query, response)]
|
|
|
1276 |
for i, (old_query, response) in enumerate(history):
|
1277 |
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
1278 |
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
1279 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
1280 |
+
inputs = inputs.to(self.device)
|
1281 |
+
for outputs in self.stream_generate(**inputs, **gen_kwargs):
|
1282 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
|
1283 |
response = tokenizer.decode(outputs)
|
1284 |
response = self.process_response(response)
|
1285 |
new_history = history + [(query, response)]
|
quantization.py
CHANGED
@@ -7,10 +7,13 @@ import bz2
|
|
7 |
import torch
|
8 |
import base64
|
9 |
import ctypes
|
|
|
10 |
|
11 |
from typing import List
|
12 |
from functools import partial
|
13 |
|
|
|
|
|
14 |
try:
|
15 |
from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
|
16 |
|
@@ -37,18 +40,18 @@ try:
|
|
37 |
)
|
38 |
except Exception as exception:
|
39 |
kernels = None
|
40 |
-
|
41 |
|
42 |
|
43 |
class W8A16Linear(torch.autograd.Function):
|
44 |
@staticmethod
|
45 |
def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width):
|
46 |
ctx.inp_shape = inp.size()
|
47 |
-
ctx.weight_shape = quant_w.size()
|
48 |
ctx.weight_bit_width = weight_bit_width
|
49 |
out_features = quant_w.size(0)
|
50 |
inp = inp.contiguous().view(-1, inp.size(-1))
|
51 |
weight = extract_weight_to_half(quant_w, scale_w, weight_bit_width)
|
|
|
52 |
output = inp.mm(weight.t())
|
53 |
ctx.save_for_backward(inp, quant_w, scale_w)
|
54 |
return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
|
@@ -60,18 +63,18 @@ class W8A16Linear(torch.autograd.Function):
|
|
60 |
grad_output = grad_output.contiguous().view(-1, weight.size(0))
|
61 |
grad_input = grad_output.mm(weight)
|
62 |
grad_weight = grad_output.t().mm(inp)
|
63 |
-
return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None
|
64 |
|
65 |
|
66 |
class W8A16LinearCPU(torch.autograd.Function):
|
67 |
@staticmethod
|
68 |
def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width, quantization_cache=None):
|
69 |
ctx.inp_shape = inp.size()
|
70 |
-
ctx.weight_shape = quant_w.size()
|
71 |
ctx.weight_bit_width = weight_bit_width
|
72 |
out_features = quant_w.size(0)
|
73 |
inp = inp.contiguous().view(-1, inp.size(-1))
|
74 |
weight = extract_weight_to_float(quant_w, scale_w, weight_bit_width, quantization_cache=quantization_cache)
|
|
|
75 |
output = inp.mm(weight.t())
|
76 |
ctx.save_for_backward(inp, quant_w, scale_w)
|
77 |
return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
|
@@ -83,7 +86,7 @@ class W8A16LinearCPU(torch.autograd.Function):
|
|
83 |
grad_output = grad_output.contiguous().view(-1, weight.size(0))
|
84 |
grad_input = grad_output.mm(weight)
|
85 |
grad_weight = grad_output.t().mm(inp)
|
86 |
-
return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None
|
87 |
|
88 |
|
89 |
default_cpu_kernel_code_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "quantization_kernels.c")
|
@@ -168,7 +171,7 @@ class CPUKernel:
|
|
168 |
print("Load kernel :", kernel_file)
|
169 |
else:
|
170 |
print("Failed to load kernel.")
|
171 |
-
|
172 |
if compile_parallel_kernel:
|
173 |
if parallel_num is None:
|
174 |
parallel_num = max(os.cpu_count() // 2, 1)
|
@@ -176,7 +179,7 @@ class CPUKernel:
|
|
176 |
if parallel_num < 4:
|
177 |
print("Parallel kernel is not recommended when parallel num < 4.")
|
178 |
self.SetNumThreads(parallel_num)
|
179 |
-
|
180 |
self.parallel_num = parallel_num
|
181 |
|
182 |
|
@@ -284,10 +287,10 @@ def extract_weight_to_float(weight: torch.Tensor, scale_list: torch.Tensor, sour
|
|
284 |
class CacheTensor():
|
285 |
def __init__(self, *args, **kwargs):
|
286 |
self.tensor = torch.empty(*args, **kwargs)
|
287 |
-
|
288 |
def to(self, *args, **kwargs):
|
289 |
self.tensor = self.tensor.to(*args, **kwargs)
|
290 |
-
|
291 |
def data_ptr(self):
|
292 |
return self.tensor.data_ptr()
|
293 |
|
@@ -393,7 +396,7 @@ def load_cpu_kernel(**kwargs):
|
|
393 |
|
394 |
def quantize(model, weight_bit_width, use_quantization_cache=False, empty_init=False, **kwargs):
|
395 |
"""Replace fp16 linear with quantized linear"""
|
396 |
-
|
397 |
query_key_value_quantization_cache = None
|
398 |
dense_quantization_cache = None
|
399 |
dense_h_to_4h_quantization_cache = None
|
|
|
7 |
import torch
|
8 |
import base64
|
9 |
import ctypes
|
10 |
+
from transformers.utils import logging
|
11 |
|
12 |
from typing import List
|
13 |
from functools import partial
|
14 |
|
15 |
+
logger = logging.get_logger(__name__)
|
16 |
+
|
17 |
try:
|
18 |
from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
|
19 |
|
|
|
40 |
)
|
41 |
except Exception as exception:
|
42 |
kernels = None
|
43 |
+
logger.warning("Failed to load cpm_kernels:", exception)
|
44 |
|
45 |
|
46 |
class W8A16Linear(torch.autograd.Function):
|
47 |
@staticmethod
|
48 |
def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width):
|
49 |
ctx.inp_shape = inp.size()
|
|
|
50 |
ctx.weight_bit_width = weight_bit_width
|
51 |
out_features = quant_w.size(0)
|
52 |
inp = inp.contiguous().view(-1, inp.size(-1))
|
53 |
weight = extract_weight_to_half(quant_w, scale_w, weight_bit_width)
|
54 |
+
ctx.weight_shape = weight.size()
|
55 |
output = inp.mm(weight.t())
|
56 |
ctx.save_for_backward(inp, quant_w, scale_w)
|
57 |
return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
|
|
|
63 |
grad_output = grad_output.contiguous().view(-1, weight.size(0))
|
64 |
grad_input = grad_output.mm(weight)
|
65 |
grad_weight = grad_output.t().mm(inp)
|
66 |
+
return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None, None
|
67 |
|
68 |
|
69 |
class W8A16LinearCPU(torch.autograd.Function):
|
70 |
@staticmethod
|
71 |
def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width, quantization_cache=None):
|
72 |
ctx.inp_shape = inp.size()
|
|
|
73 |
ctx.weight_bit_width = weight_bit_width
|
74 |
out_features = quant_w.size(0)
|
75 |
inp = inp.contiguous().view(-1, inp.size(-1))
|
76 |
weight = extract_weight_to_float(quant_w, scale_w, weight_bit_width, quantization_cache=quantization_cache)
|
77 |
+
ctx.weight_shape = weight.size()
|
78 |
output = inp.mm(weight.t())
|
79 |
ctx.save_for_backward(inp, quant_w, scale_w)
|
80 |
return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
|
|
|
86 |
grad_output = grad_output.contiguous().view(-1, weight.size(0))
|
87 |
grad_input = grad_output.mm(weight)
|
88 |
grad_weight = grad_output.t().mm(inp)
|
89 |
+
return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None, None
|
90 |
|
91 |
|
92 |
default_cpu_kernel_code_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "quantization_kernels.c")
|
|
|
171 |
print("Load kernel :", kernel_file)
|
172 |
else:
|
173 |
print("Failed to load kernel.")
|
174 |
+
|
175 |
if compile_parallel_kernel:
|
176 |
if parallel_num is None:
|
177 |
parallel_num = max(os.cpu_count() // 2, 1)
|
|
|
179 |
if parallel_num < 4:
|
180 |
print("Parallel kernel is not recommended when parallel num < 4.")
|
181 |
self.SetNumThreads(parallel_num)
|
182 |
+
|
183 |
self.parallel_num = parallel_num
|
184 |
|
185 |
|
|
|
287 |
class CacheTensor():
|
288 |
def __init__(self, *args, **kwargs):
|
289 |
self.tensor = torch.empty(*args, **kwargs)
|
290 |
+
|
291 |
def to(self, *args, **kwargs):
|
292 |
self.tensor = self.tensor.to(*args, **kwargs)
|
293 |
+
|
294 |
def data_ptr(self):
|
295 |
return self.tensor.data_ptr()
|
296 |
|
|
|
396 |
|
397 |
def quantize(model, weight_bit_width, use_quantization_cache=False, empty_init=False, **kwargs):
|
398 |
"""Replace fp16 linear with quantized linear"""
|
399 |
+
|
400 |
query_key_value_quantization_cache = None
|
401 |
dense_quantization_cache = None
|
402 |
dense_h_to_4h_quantization_cache = None
|
tokenization_chatglm.py
CHANGED
@@ -1,17 +1,14 @@
|
|
1 |
"""Tokenization classes for ChatGLM."""
|
2 |
-
import sys
|
3 |
-
import unicodedata
|
4 |
from typing import List, Optional, Union
|
5 |
-
from functools import lru_cache
|
6 |
import os
|
7 |
-
import collections
|
8 |
-
import re
|
9 |
|
10 |
from transformers.tokenization_utils import PreTrainedTokenizer
|
11 |
from icetk.text_tokenizer import TextTokenizer
|
12 |
-
from icetk.utils import auto_create
|
13 |
import icetk.sentencepiece_model_pb2 as sp_model
|
14 |
-
from transformers.utils import logging
|
|
|
|
|
|
|
15 |
|
16 |
logger = logging.get_logger(__name__)
|
17 |
|
@@ -180,7 +177,7 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
180 |
|
181 |
vocab_files_names = {"vocab_file": "ice_text.model"}
|
182 |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
183 |
-
model_input_names = ["input_ids"]
|
184 |
|
185 |
def __init__(
|
186 |
self,
|
@@ -210,7 +207,7 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
210 |
self.eos_token = eos_token
|
211 |
self.eop_token = eop_token
|
212 |
self.mask_token = mask_token
|
213 |
-
self.
|
214 |
|
215 |
self.sp_tokenizer = SPTokenizer(vocab_file)
|
216 |
|
@@ -331,10 +328,9 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
331 |
Returns:
|
332 |
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
333 |
"""
|
334 |
-
if token_ids_1 is not None:
|
335 |
-
token_ids_0 += token_ids_1
|
336 |
mask_ids = self.sp_tokenizer[self.mask_token]
|
337 |
-
gmask_ids = self.sp_tokenizer[self.
|
|
|
338 |
if mask_ids not in token_ids_0 and gmask_ids not in token_ids_0:
|
339 |
token_ids_0 += [gmask_ids]
|
340 |
|
@@ -343,4 +339,101 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
343 |
|
344 |
token_ids_0 += [self.sp_tokenizer[self.bos_token]]
|
345 |
|
|
|
|
|
|
|
|
|
|
|
346 |
return token_ids_0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""Tokenization classes for ChatGLM."""
|
|
|
|
|
2 |
from typing import List, Optional, Union
|
|
|
3 |
import os
|
|
|
|
|
4 |
|
5 |
from transformers.tokenization_utils import PreTrainedTokenizer
|
6 |
from icetk.text_tokenizer import TextTokenizer
|
|
|
7 |
import icetk.sentencepiece_model_pb2 as sp_model
|
8 |
+
from transformers.utils import logging, PaddingStrategy
|
9 |
+
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
10 |
+
from typing import Dict
|
11 |
+
import numpy as np
|
12 |
|
13 |
logger = logging.get_logger(__name__)
|
14 |
|
|
|
177 |
|
178 |
vocab_files_names = {"vocab_file": "ice_text.model"}
|
179 |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
180 |
+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
181 |
|
182 |
def __init__(
|
183 |
self,
|
|
|
207 |
self.eos_token = eos_token
|
208 |
self.eop_token = eop_token
|
209 |
self.mask_token = mask_token
|
210 |
+
self.gmask_token = gmask_token
|
211 |
|
212 |
self.sp_tokenizer = SPTokenizer(vocab_file)
|
213 |
|
|
|
328 |
Returns:
|
329 |
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
330 |
"""
|
|
|
|
|
331 |
mask_ids = self.sp_tokenizer[self.mask_token]
|
332 |
+
gmask_ids = self.sp_tokenizer[self.gmask_token]
|
333 |
+
eop_id = self.sp_tokenizer[self.eop_token]
|
334 |
if mask_ids not in token_ids_0 and gmask_ids not in token_ids_0:
|
335 |
token_ids_0 += [gmask_ids]
|
336 |
|
|
|
339 |
|
340 |
token_ids_0 += [self.sp_tokenizer[self.bos_token]]
|
341 |
|
342 |
+
if token_ids_1 is not None:
|
343 |
+
if not token_ids_1 or token_ids_1[-1] != eop_id:
|
344 |
+
token_ids_1 += [eop_id]
|
345 |
+
token_ids_0 += token_ids_1
|
346 |
+
|
347 |
return token_ids_0
|
348 |
+
|
349 |
+
def _pad(
|
350 |
+
self,
|
351 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
352 |
+
max_length: Optional[int] = None,
|
353 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
354 |
+
pad_to_multiple_of: Optional[int] = None,
|
355 |
+
return_attention_mask: Optional[bool] = None,
|
356 |
+
) -> dict:
|
357 |
+
"""
|
358 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
359 |
+
|
360 |
+
Args:
|
361 |
+
encoded_inputs:
|
362 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
363 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
364 |
+
Will truncate by taking into account the special tokens.
|
365 |
+
padding_strategy: PaddingStrategy to use for padding.
|
366 |
+
|
367 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
368 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
369 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
370 |
+
The tokenizer padding sides are defined in self.padding_side:
|
371 |
+
|
372 |
+
- 'left': pads on the left of the sequences
|
373 |
+
- 'right': pads on the right of the sequences
|
374 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
375 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
376 |
+
`>= 7.5` (Volta).
|
377 |
+
return_attention_mask:
|
378 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
379 |
+
"""
|
380 |
+
# Load from model defaults
|
381 |
+
bos_token_id = self.sp_tokenizer[self.bos_token]
|
382 |
+
mask_token_id = self.sp_tokenizer[self.mask_token]
|
383 |
+
gmask_token_id = self.sp_tokenizer[self.gmask_token]
|
384 |
+
assert self.padding_side == "left"
|
385 |
+
|
386 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
387 |
+
seq_length = len(required_input)
|
388 |
+
|
389 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
390 |
+
max_length = len(required_input)
|
391 |
+
|
392 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
393 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
394 |
+
|
395 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
396 |
+
|
397 |
+
# Initialize attention mask if not present.
|
398 |
+
if max_length is not None:
|
399 |
+
if "attention_mask" not in encoded_inputs:
|
400 |
+
if bos_token_id in required_input:
|
401 |
+
context_length = required_input.index(bos_token_id)
|
402 |
+
else:
|
403 |
+
context_length = seq_length
|
404 |
+
attention_mask = np.ones((1, seq_length, seq_length))
|
405 |
+
attention_mask = np.tril(attention_mask)
|
406 |
+
attention_mask[:, :, :context_length] = 1
|
407 |
+
attention_mask = np.bool_(attention_mask < 0.5)
|
408 |
+
encoded_inputs["attention_mask"] = attention_mask
|
409 |
+
|
410 |
+
if "position_ids" not in encoded_inputs:
|
411 |
+
position_ids = np.arange(seq_length, dtype=np.int64)
|
412 |
+
mask_token = mask_token_id if mask_token_id in required_input else gmask_token_id
|
413 |
+
if mask_token in required_input:
|
414 |
+
mask_position = required_input.index(mask_token)
|
415 |
+
position_ids[context_length:] = mask_position
|
416 |
+
block_position_ids = np.concatenate(
|
417 |
+
[np.zeros(context_length, dtype=np.int64),
|
418 |
+
np.arange(1, seq_length - context_length + 1, dtype=np.int64)])
|
419 |
+
encoded_inputs["position_ids"] = np.stack([position_ids, block_position_ids], axis=0)
|
420 |
+
|
421 |
+
if needs_to_be_padded:
|
422 |
+
difference = max_length - len(required_input)
|
423 |
+
|
424 |
+
if "attention_mask" in encoded_inputs:
|
425 |
+
encoded_inputs["attention_mask"] = np.pad(encoded_inputs["attention_mask"],
|
426 |
+
pad_width=[(0, 0), (difference, 0), (difference, 0)],
|
427 |
+
mode='constant', constant_values=True)
|
428 |
+
if "token_type_ids" in encoded_inputs:
|
429 |
+
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
430 |
+
"token_type_ids"
|
431 |
+
]
|
432 |
+
if "special_tokens_mask" in encoded_inputs:
|
433 |
+
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
434 |
+
if "position_ids" in encoded_inputs:
|
435 |
+
encoded_inputs["position_ids"] = np.pad(encoded_inputs["position_ids"],
|
436 |
+
pad_width=[(0, 0), (difference, 0)])
|
437 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
438 |
+
|
439 |
+
return encoded_inputs
|