File size: 2,730 Bytes
2b86d6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Regression_xlnet_NOaug_MSEloss
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Regression_xlnet_NOaug_MSEloss
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6460
- Mse: 0.6460
- Mae: 0.7041
- R2: -0.1893
- Accuracy: 0.2632
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-12
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:--------:|
| No log | 1.0 | 33 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
| No log | 2.0 | 66 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
| No log | 3.0 | 99 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
| No log | 4.0 | 132 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
| No log | 5.0 | 165 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
| No log | 6.0 | 198 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
| No log | 7.0 | 231 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
| No log | 8.0 | 264 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
| No log | 9.0 | 297 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
| No log | 10.0 | 330 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
| No log | 11.0 | 363 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
| No log | 12.0 | 396 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
| No log | 13.0 | 429 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
| No log | 14.0 | 462 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
| No log | 15.0 | 495 | 0.7342 | 0.7342 | 0.7706 | -1.1938 | 0.2703 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|