--- license: apache-2.0 base_model: facebook/wav2vec2-base-960h tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-960h-finetuned-gtzan-v1 results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.73 --- # wav2vec2-base-960h-finetuned-gtzan-v1 This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9585 - Accuracy: 0.73 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2779 | 1.0 | 113 | 2.2108 | 0.15 | | 2.2332 | 2.0 | 226 | 2.2445 | 0.22 | | 1.9418 | 3.0 | 339 | 1.8945 | 0.27 | | 1.654 | 4.0 | 452 | 1.6766 | 0.33 | | 1.4822 | 5.0 | 565 | 1.6078 | 0.53 | | 1.3172 | 6.0 | 678 | 1.3317 | 0.55 | | 1.2133 | 7.0 | 791 | 1.2287 | 0.65 | | 0.9575 | 8.0 | 904 | 1.0401 | 0.63 | | 0.8893 | 9.0 | 1017 | 0.9700 | 0.71 | | 0.9531 | 10.0 | 1130 | 0.9585 | 0.73 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0