Preechanon Chatthai
commited on
Commit
•
2b76585
1
Parent(s):
64fda11
Upload 2 files
Browse files- Finetune.ipynb +263 -0
- requirements.txt +11 -0
Finetune.ipynb
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "0e7385a4",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stderr",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"C:\\Users\\preec\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.12_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python312\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
14 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"data": {
|
19 |
+
"text/plain": [
|
20 |
+
"DatasetDict({\n",
|
21 |
+
" train: Dataset({\n",
|
22 |
+
" features: ['title', 'body', 'summary', 'type', 'tags', 'url'],\n",
|
23 |
+
" num_rows: 358868\n",
|
24 |
+
" })\n",
|
25 |
+
" validation: Dataset({\n",
|
26 |
+
" features: ['title', 'body', 'summary', 'type', 'tags', 'url'],\n",
|
27 |
+
" num_rows: 11000\n",
|
28 |
+
" })\n",
|
29 |
+
" test: Dataset({\n",
|
30 |
+
" features: ['title', 'body', 'summary', 'type', 'tags', 'url'],\n",
|
31 |
+
" num_rows: 11000\n",
|
32 |
+
" })\n",
|
33 |
+
"})"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"execution_count": 1,
|
37 |
+
"metadata": {},
|
38 |
+
"output_type": "execute_result"
|
39 |
+
}
|
40 |
+
],
|
41 |
+
"source": [
|
42 |
+
"from datasets import load_dataset\n",
|
43 |
+
"\n",
|
44 |
+
"ds = load_dataset(\"thaisum\")\n",
|
45 |
+
"ds"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": null,
|
51 |
+
"id": "337b3bc6",
|
52 |
+
"metadata": {},
|
53 |
+
"outputs": [],
|
54 |
+
"source": [
|
55 |
+
"from datasets import load_dataset\n",
|
56 |
+
"from datasets import DatasetDict \n",
|
57 |
+
"\n",
|
58 |
+
"dataset = load_dataset('csv', data_files='thaisum.csv')\n",
|
59 |
+
"ds_train_devtest = dataset['train'].train_test_split(test_size=0.05, seed=42)\n",
|
60 |
+
"ds_devtest = ds_train_devtest['test'].train_test_split(test_size=0.5, seed=42)\n",
|
61 |
+
"\n",
|
62 |
+
"\n",
|
63 |
+
"ds_thai_news = DatasetDict({\n",
|
64 |
+
" 'train': ds_train_devtest['train'],\n",
|
65 |
+
" 'valid': ds_devtest['train'],\n",
|
66 |
+
" 'test': ds_devtest['test']\n",
|
67 |
+
"})\n",
|
68 |
+
"ds_thai_news"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": 2,
|
74 |
+
"id": "286cbb13-5fff-4291-bdd7-3e4ddf972228",
|
75 |
+
"metadata": {},
|
76 |
+
"outputs": [
|
77 |
+
{
|
78 |
+
"name": "stderr",
|
79 |
+
"output_type": "stream",
|
80 |
+
"text": [
|
81 |
+
"C:\\Users\\preec\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.12_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python312\\site-packages\\transformers\\utils\\generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
|
82 |
+
" _torch_pytree._register_pytree_node(\n",
|
83 |
+
"C:\\Users\\preec\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.12_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python312\\site-packages\\transformers\\utils\\generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
|
84 |
+
" _torch_pytree._register_pytree_node(\n",
|
85 |
+
"C:\\Users\\preec\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.12_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python312\\site-packages\\transformers\\utils\\generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
|
86 |
+
" _torch_pytree._register_pytree_node(\n"
|
87 |
+
]
|
88 |
+
}
|
89 |
+
],
|
90 |
+
"source": [
|
91 |
+
"from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoConfig\n",
|
92 |
+
"import torch\n",
|
93 |
+
"\n",
|
94 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
95 |
+
"\n",
|
96 |
+
"mt5_config = AutoConfig.from_pretrained(\n",
|
97 |
+
" \"../mt5-base-thaisum-text-summarization\",\n",
|
98 |
+
" local_files_only=True,\n",
|
99 |
+
" max_length=140,\n",
|
100 |
+
" min_length=40,\n",
|
101 |
+
" length_penalty=1.2,\n",
|
102 |
+
" no_repeat_ngram_size=2,\n",
|
103 |
+
" num_beams=15,\n",
|
104 |
+
")\n",
|
105 |
+
"\n",
|
106 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"../mt5-base-thaisum-text-summarization\", local_files_only=True)\n",
|
107 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(\"../mt5-base-thaisum-text-summarization\", local_files_only=True).to(device)"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "code",
|
112 |
+
"execution_count": 3,
|
113 |
+
"id": "ebfdf213",
|
114 |
+
"metadata": {},
|
115 |
+
"outputs": [
|
116 |
+
{
|
117 |
+
"name": "stderr",
|
118 |
+
"output_type": "stream",
|
119 |
+
"text": [
|
120 |
+
"Map: 100%|██████████| 11000/11000 [00:17<00:00, 622.18 examples/s]\n"
|
121 |
+
]
|
122 |
+
}
|
123 |
+
],
|
124 |
+
"source": [
|
125 |
+
"from transformers import DataCollatorForSeq2Seq\n",
|
126 |
+
"data_collator = DataCollatorForSeq2Seq(\n",
|
127 |
+
" tokenizer,\n",
|
128 |
+
" model=model,\n",
|
129 |
+
" return_tensors=\"pt\")\n",
|
130 |
+
"\n",
|
131 |
+
"def tokenize_data(data):\n",
|
132 |
+
"\n",
|
133 |
+
" input_feature = tokenizer(data[\"body\"], truncation=True, max_length=512)\n",
|
134 |
+
" label = tokenizer(data[\"summary\"], truncation=True, max_length=140)\n",
|
135 |
+
" return {\n",
|
136 |
+
" \"input_ids\": input_feature[\"input_ids\"],\n",
|
137 |
+
" \"attention_mask\": input_feature[\"attention_mask\"],\n",
|
138 |
+
" \"labels\": label[\"input_ids\"],\n",
|
139 |
+
" }\n",
|
140 |
+
"\n",
|
141 |
+
"token_ds_thai_news = ds.map(\n",
|
142 |
+
" tokenize_data,\n",
|
143 |
+
" remove_columns=['title', 'body', 'summary', 'type', 'tags', 'url'],\n",
|
144 |
+
" batched=True,\n",
|
145 |
+
" batch_size=64)"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": 4,
|
151 |
+
"id": "a01f4771",
|
152 |
+
"metadata": {},
|
153 |
+
"outputs": [],
|
154 |
+
"source": [
|
155 |
+
"import evaluate\n",
|
156 |
+
"import numpy as np\n",
|
157 |
+
"def tokenize_sentence(arg):\n",
|
158 |
+
" encoded_arg = tokenizer(arg)\n",
|
159 |
+
" return tokenizer.convert_ids_to_tokens(encoded_arg.input_ids)\n",
|
160 |
+
"\n",
|
161 |
+
"def metrics_func(eval_arg):\n",
|
162 |
+
" preds, labels = eval_arg\n",
|
163 |
+
" labels = np.where(labels != -100, labels, tokenizer.pad_token_id)\n",
|
164 |
+
" text_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)\n",
|
165 |
+
" text_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)\n",
|
166 |
+
"\n",
|
167 |
+
" return rouge_metric.compute(\n",
|
168 |
+
" predictions=text_preds,\n",
|
169 |
+
" references=text_labels,\n",
|
170 |
+
" tokenizer=tokenize_sentence\n",
|
171 |
+
" )\n",
|
172 |
+
"rouge_metric = evaluate.load(\"rouge\")"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"cell_type": "code",
|
177 |
+
"execution_count": 5,
|
178 |
+
"id": "5d0f286b",
|
179 |
+
"metadata": {},
|
180 |
+
"outputs": [],
|
181 |
+
"source": [
|
182 |
+
"from transformers import Seq2SeqTrainingArguments\n",
|
183 |
+
"\n",
|
184 |
+
"training_args = Seq2SeqTrainingArguments(\n",
|
185 |
+
" output_dir = \"..\",\n",
|
186 |
+
" log_level = \"error\",\n",
|
187 |
+
" num_train_epochs = 6,\n",
|
188 |
+
" learning_rate = 5e-4,\n",
|
189 |
+
" warmup_steps = 5000,\n",
|
190 |
+
" weight_decay=0.01,\n",
|
191 |
+
" per_device_train_batch_size = 8,\n",
|
192 |
+
" per_device_eval_batch_size = 1,\n",
|
193 |
+
" gradient_accumulation_steps = 4,\n",
|
194 |
+
" evaluation_strategy = \"steps\",\n",
|
195 |
+
" eval_steps = 100,\n",
|
196 |
+
" predict_with_generate=True,\n",
|
197 |
+
" generation_max_length = 140,\n",
|
198 |
+
" save_steps = 3000,\n",
|
199 |
+
" logging_steps = 10,\n",
|
200 |
+
" push_to_hub = False,\n",
|
201 |
+
" remove_unused_columns=False\n",
|
202 |
+
")\n"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"cell_type": "code",
|
207 |
+
"execution_count": null,
|
208 |
+
"id": "33e02416",
|
209 |
+
"metadata": {},
|
210 |
+
"outputs": [],
|
211 |
+
"source": [
|
212 |
+
"from transformers import Seq2SeqTrainer\n",
|
213 |
+
"trainer = Seq2SeqTrainer(\n",
|
214 |
+
" model = model,\n",
|
215 |
+
" args = training_args,\n",
|
216 |
+
" data_collator = data_collator,\n",
|
217 |
+
" compute_metrics = metrics_func,\n",
|
218 |
+
" train_dataset = token_ds_thai_news[\"train\"],\n",
|
219 |
+
" eval_dataset = token_ds_thai_news[\"valid\"].select(range(30)),\n",
|
220 |
+
" tokenizer = tokenizer,\n",
|
221 |
+
")"
|
222 |
+
]
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"cell_type": "code",
|
226 |
+
"execution_count": null,
|
227 |
+
"id": "1048d26c",
|
228 |
+
"metadata": {},
|
229 |
+
"outputs": [],
|
230 |
+
"source": [
|
231 |
+
"import os\n",
|
232 |
+
"from transformers import AutoModelForSeq2SeqLM\n",
|
233 |
+
"\n",
|
234 |
+
"os.makedirs(\"./trained_for_summarization\", exist_ok=True)\n",
|
235 |
+
"if hasattr(trainer.model, \"module\"):\n",
|
236 |
+
" trainer.model.module.save_pretrained(\"./trained_for_summarization\")\n",
|
237 |
+
"else:\n",
|
238 |
+
" trainer.model.save_pretrained(\"./trained_for_summarization\")"
|
239 |
+
]
|
240 |
+
}
|
241 |
+
],
|
242 |
+
"metadata": {
|
243 |
+
"kernelspec": {
|
244 |
+
"display_name": "Python 3 (ipykernel)",
|
245 |
+
"language": "python",
|
246 |
+
"name": "python3"
|
247 |
+
},
|
248 |
+
"language_info": {
|
249 |
+
"codemirror_mode": {
|
250 |
+
"name": "ipython",
|
251 |
+
"version": 3
|
252 |
+
},
|
253 |
+
"file_extension": ".py",
|
254 |
+
"mimetype": "text/x-python",
|
255 |
+
"name": "python",
|
256 |
+
"nbconvert_exporter": "python",
|
257 |
+
"pygments_lexer": "ipython3",
|
258 |
+
"version": "3.12.2"
|
259 |
+
}
|
260 |
+
},
|
261 |
+
"nbformat": 4,
|
262 |
+
"nbformat_minor": 5
|
263 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.36.1
|
2 |
+
numpy
|
3 |
+
datasets
|
4 |
+
nltk
|
5 |
+
pythainlp
|
6 |
+
rouge_score
|
7 |
+
evaluate
|
8 |
+
--index-url https://download.pytorch.org/whl/cu118
|
9 |
+
torch
|
10 |
+
torchvision
|
11 |
+
torchaudio --index-url https://download.pytorch.org/whl/cu118
|