--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.85 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6339 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3209 | 0.99 | 28 | 0.6060 | 0.79 | | 0.2765 | 1.98 | 56 | 0.6062 | 0.8 | | 0.1591 | 2.97 | 84 | 0.5890 | 0.82 | | 0.1229 | 4.0 | 113 | 0.5589 | 0.85 | | 0.1015 | 4.99 | 141 | 0.6551 | 0.87 | | 0.0537 | 5.98 | 169 | 0.6066 | 0.84 | | 0.0422 | 6.97 | 197 | 0.5947 | 0.84 | | 0.0422 | 8.0 | 226 | 0.5898 | 0.85 | | 0.0415 | 8.99 | 254 | 0.6020 | 0.85 | | 0.0296 | 9.91 | 280 | 0.6339 | 0.85 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3