--- license: apache-2.0 tags: - generated_from_trainer datasets: - fleurs metrics: - wer base_model: facebook/wav2vec2-base-960h model-index: - name: wav2vec2-base-fleurs-329-colab-a100-2 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: fleurs type: fleurs config: en_us split: test args: en_us metrics: - type: wer value: 0.9917617237008872 name: Wer --- # wav2vec2-base-fleurs-329-colab-a100-2 This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 2.5431 - Wer: 0.9918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.5696 | 2.45 | 200 | 5.0490 | 1.0 | | 4.0587 | 4.91 | 400 | 3.3808 | 1.0 | | 3.0272 | 7.36 | 600 | 2.7368 | 0.9954 | | 2.6659 | 9.82 | 800 | 2.5431 | 0.9918 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2