File size: 4,038 Bytes
0bef028 eea8663 0bef028 1ccdb11 0bef028 2431ab3 0bef028 2431ab3 d4d61e3 1ccdb11 d4d61e3 65b8a48 d4d61e3 eea8663 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
language:
- multilingual
- pl
- ru
- uk
- bg
- cs
- sl
datasets:
- SlavicNER
license: apache-2.0
library_name: transformers
pipeline_tag: text2text-generation
tags:
- entity linking
widget:
- text: pl:Polsce
example_title: Polish
- text: cs:Velké Británii
example_title: Czech
- text: bg:българите
example_title: Bulgarian
- text: ru:Великобританию
example_title: Russian
- text: sl:evropske komisije
example_title: Slovene
- text: uk:Європейського агентства лікарських засобів
example_title: Ukrainian
---
# Model description
This is a baseline model for named entity **lemmatization** trained on the single-out topic split of the
[SlavicNER corpus](https://github.com/SlavicNLP/SlavicNER).
# Resources and Technical Documentation
- Paper: [Cross-lingual Named Entity Corpus for Slavic Languages](https://arxiv.org/pdf/2404.00482), to appear in LREC-COLING 2024.
- Annotation guidelines: https://arxiv.org/pdf/2404.00482
- SlavicNER Corpus: https://github.com/SlavicNLP/SlavicNER
# Evaluation
| **Language** | **Seq2seq** | **Support** |
|:------------:|:-----------:|-----------------:|
| PL | 75.13 | 2 549 |
| CS | 77.92 | 1 137 |
| RU | 67.56 | 18 018 |
| BG | 63.60 | 6 085 |
| SL | 76.81 | 7 082 |
| UK | 58.94 | 3 085 |
| All | 68.75 | 37 956 |
# Usage
You can use this model directly with a pipeline for text2text generation:
```python
from transformers import pipeline
model_name = "SlavicNLP/slavicner-linking-single-out-large"
pipe = pipeline("text2text-generation", model_name)
texts = ["pl:Polsce", "cs:Velké Británii", "bg:българите", "ru:Великобританию",
"sl:evropske komisije", "uk:Європейського агентства лікарських засобів"]
outputs = pipe(texts)
ids = [o['generated_text'] for o in outputs]
print(ids)
# ['GPE-Poland', 'GPE-Great-Britain', 'GPE-Bulgaria', 'GPE-Great-Britain',
# 'ORG-European-Commission', 'ORG-EMA-European-Medicines-Agency']
```
# Citation
```latex
@inproceedings{piskorski-etal-2024-cross-lingual,
title = "Cross-lingual Named Entity Corpus for {S}lavic Languages",
author = "Piskorski, Jakub and
Marci{\'n}czuk, Micha{\l} and
Yangarber, Roman",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italy",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.369",
pages = "4143--4157",
abstract = "This paper presents a corpus manually annotated with named entities for six Slavic languages {---} Bulgarian, Czech, Polish, Slovenian, Russian,
and Ukrainian. This work is the result of a series of shared tasks, conducted in 2017{--}2023 as a part of the Workshops on Slavic Natural
Language Processing. The corpus consists of 5,017 documents on seven topics. The documents are annotated with five classes of named entities.
Each entity is described by a category, a lemma, and a unique cross-lingual identifier. We provide two train-tune dataset splits
{---} single topic out and cross topics. For each split, we set benchmarks using a transformer-based neural network architecture
with the pre-trained multilingual models {---} XLM-RoBERTa-large for named entity mention recognition and categorization,
and mT5-large for named entity lemmatization and linking.",
}
```
# Contact
Michał Marcińczuk ([email protected]) |