--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad base_model: bert-base-cased model-index: - name: bert-finetuned-squad results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 40.2443 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTc3Y2YyY2Y5ZTMxMGQ3M2U3YThmMjFiM2JlOWQ4MjE0YzZmMmM3NzY4ZDcxYzY4ZTAwNTU4MGE3YmQxOTJhNiIsInZlcnNpb24iOjF9.tk2uBvygzQsexdkxKvFBgKGY8lPNzEG7Pqi-6fL688LTiCMACFFSrZUhyv5b31orF7_CbJkHFjKuMHmX0V_UCA - type: f1 value: 44.135 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmE1NWFlYzQ3YTZiMmY3ZDgyYWRlNzI5M2IwYzZkOWUwMDE2NGU4M2RjODBiNjEzY2YxNTVlZmE5OWNmNDU2NiIsInZlcnNpb24iOjF9.pgr2rkyQe-QdwVXuw-uBXheKFz0EhDiyO0doLMmcOi51t_slDPldk29YRXQKvpsfy3YpH_t-xaXQLs1n8VcjDQ - task: type: question-answering name: Question Answering dataset: name: subjqa type: subjqa config: grocery split: train metrics: - type: exact_match value: 5.625 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDMyMDQ1OWFkY2IwYTcxNTljYTZjYTM0ZThjOGEwZWJjYjBlZWQxYWE1ZjMwNDg5NGY5MTFiYmM4YWM0Y2Y2NCIsInZlcnNpb24iOjF9.4nwNKC2teDPVd5YqvjS8sV3q-ylC9fWO5lOiZVk8o3UNdKyAtl3qAH6dU7lGcHZrxasN7zNrxv5kD5nNWr9YBQ - type: f1 value: 15.8411 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWMzMTAzNTljNjFlM2E4NGIzNjRjNzRiZTIxZjBlNjkzZWM4NjcxMjUzOGZjZTgxMGUxODk4ZjFkZmJiMjg4ZiIsInZlcnNpb24iOjF9.agcp8QkYeHBvs2Qp0YmEMlvEx1_4a_dv_0cm26UbF-YgYU_7cR86ar-h1V56mrfcKUjNRRiK79GD0P9WT6mADw --- # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1