Sharathhebbar24 commited on
Commit
5f1d57c
•
1 Parent(s): 00bca43

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +154 -127
README.md CHANGED
@@ -1,201 +1,228 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
 
 
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
 
 
 
 
 
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
 
 
156
 
157
- [More Information Needed]
 
 
 
 
 
 
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
  #### Hardware
164
 
165
- [More Information Needed]
166
 
167
  #### Software
168
 
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
 
 
 
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
 
 
201
 
 
 
 
1
  ---
2
+ datasets:
3
+ - tiiuae/falcon-refinedweb
4
+ language:
5
+ - en
6
+ inference: true
7
+ widget:
8
+ - text: "Hey Falcon! Any recommendations for my holidays in Abu Dhabi?"
9
+ example_title: "Abu Dhabi Trip"
10
+ - text: "What's the Everett interpretation of quantum mechanics?"
11
+ example_title: "Q/A: Quantum & Answers"
12
+ - text: "Give me a list of the top 10 dive sites you would recommend around the world."
13
+ example_title: "Diving Top 10"
14
+ - text: "Can you tell me more about deep-water soloing?"
15
+ example_title: "Extreme sports"
16
+ - text: "Can you write a short tweet about the Apache 2.0 release of our latest AI model, Falcon LLM?"
17
+ example_title: "Twitter Helper"
18
+ - text: "What are the responsabilities of a Chief Llama Officer?"
19
+ example_title: "Trendy Jobs"
20
+ license: apache-2.0
21
  ---
22
 
23
+ This is a Sharded version of [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) which takes 3GB RAM to load where as the original model takes around 16GB RAM.
24
+ # ✨ Falcon-7B-Instruct
25
 
26
+ **Falcon-7B-Instruct is a 7B parameters causal decoder-only model built by [TII](https://www.tii.ae) based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and finetuned on a mixture of chat/instruct datasets. It is made available under the Apache 2.0 license.**
27
 
28
+ *Paper coming soon 😊.*
29
 
30
+ 🤗 To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading [this great blogpost fron HF](https://huggingface.co/blog/falcon)!
31
 
32
+ ## Why use Falcon-7B-Instruct?
33
 
34
+ * **You are looking for a ready-to-use chat/instruct model based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).**
35
+ * **Falcon-7B is a strong base model, outperforming comparable open-source models** (e.g., [MPT-7B](https://huggingface.co/mosaicml/mpt-7b), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1) etc.), thanks to being trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
36
+ * **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)).
37
 
38
+ 💬 **This is an instruct model, which may not be ideal for further finetuning.** If you are interested in building your own instruct/chat model, we recommend starting from [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).
39
 
40
+ 🔥 **Looking for an even more powerful model?** [Falcon-40B-Instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) is Falcon-7B-Instruct's big brother!
41
 
42
+ ```python
43
+ from transformers import AutoTokenizer, AutoModelForCausalLM
44
+ import transformers
45
+ import torch
46
+ model = "tiiuae/falcon-7b-instruct"
47
+ tokenizer = AutoTokenizer.from_pretrained(model)
48
+ pipeline = transformers.pipeline(
49
+ "text-generation",
50
+ model=model,
51
+ tokenizer=tokenizer,
52
+ torch_dtype=torch.bfloat16,
53
+ trust_remote_code=True,
54
+ device_map="auto",
55
+ )
56
+ sequences = pipeline(
57
+ "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
58
+ max_length=200,
59
+ do_sample=True,
60
+ top_k=10,
61
+ num_return_sequences=1,
62
+ eos_token_id=tokenizer.eos_token_id,
63
+ )
64
+ for seq in sequences:
65
+ print(f"Result: {seq['generated_text']}")
66
+ ```
67
 
68
+ 💥 **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**
69
 
70
+ For fast inference with Falcon, check-out [Text Generation Inference](https://github.com/huggingface/text-generation-inference)! Read more in this [blogpost]((https://huggingface.co/blog/falcon).
71
 
72
+ You will need **at least 16GB of memory** to swiftly run inference with Falcon-7B-Instruct.
 
 
73
 
 
74
 
75
+ # Model Card for Falcon-7B-Instruct
76
 
77
+ ## Model Details
78
+
79
+ ### Model Description
80
+
81
+ - **Developed by:** [https://www.tii.ae](https://www.tii.ae);
82
+ - **Model type:** Causal decoder-only;
83
+ - **Language(s) (NLP):** English and French;
84
+ - **License:** Apache 2.0;
85
+ - **Finetuned from model:** [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).
86
 
87
+ ### Model Source
88
 
89
+ - **Paper:** *coming soon*.
90
 
91
+ ## Uses
92
 
93
+ ### Direct Use
94
 
95
+ Falcon-7B-Instruct has been finetuned on a mixture of instruct and chat datasets.
96
 
97
  ### Out-of-Scope Use
98
 
99
+ Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
 
 
100
 
101
  ## Bias, Risks, and Limitations
102
 
103
+ Falcon-7B-Instruct is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
 
 
104
 
105
  ### Recommendations
106
 
107
+ We recommend users of Falcon-7B-Instruct to develop guardrails and to take appropriate precautions for any production use.
 
 
108
 
109
  ## How to Get Started with the Model
110
 
 
111
 
112
+ ```python
113
+ from transformers import AutoTokenizer, AutoModelForCausalLM
114
+ import transformers
115
+ import torch
116
+ model = "tiiuae/falcon-7b-instruct"
117
+ tokenizer = AutoTokenizer.from_pretrained(model)
118
+ pipeline = transformers.pipeline(
119
+ "text-generation",
120
+ model=model,
121
+ tokenizer=tokenizer,
122
+ torch_dtype=torch.bfloat16,
123
+ trust_remote_code=True,
124
+ device_map="auto",
125
+ )
126
+ sequences = pipeline(
127
+ "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
128
+ max_length=200,
129
+ do_sample=True,
130
+ top_k=10,
131
+ num_return_sequences=1,
132
+ eos_token_id=tokenizer.eos_token_id,
133
+ )
134
+ for seq in sequences:
135
+ print(f"Result: {seq['generated_text']}")
136
+ ```
137
 
138
  ## Training Details
139
 
140
  ### Training Data
141
 
142
+ Falcon-7B-Instruct was finetuned on a 250M tokens mixture of instruct/chat datasets.
 
 
 
 
 
 
 
 
 
 
143
 
144
+ | **Data source** | **Fraction** | **Tokens** | **Description** |
145
+ |--------------------|--------------|------------|-----------------------------------|
146
+ | [Bai ze](https://github.com/project-baize/baize-chatbot) | 65% | 164M | chat |
147
+ | [GPT4All](https://github.com/nomic-ai/gpt4all) | 25% | 62M | instruct |
148
+ | [GPTeacher](https://github.com/teknium1/GPTeacher) | 5% | 11M | instruct |
149
+ | [RefinedWeb-English](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | 5% | 13M | massive web crawl |
150
 
 
151
 
152
+ The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b) tokenizer.
153
 
 
 
 
 
 
154
 
155
  ## Evaluation
156
 
157
+ *Paper coming soon.*
 
 
 
 
 
 
158
 
159
+ See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results.
160
 
161
+ Note that this model variant is not optimized for NLP benchmarks.
162
 
 
163
 
164
+ ## Technical Specifications
165
 
166
+ For more information about pretraining, see [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).
167
 
168
+ ### Model Architecture and Objective
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169
 
170
+ Falcon-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
 
 
 
 
171
 
172
+ The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences:
173
 
174
+ * **Positionnal embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864));
175
+ * **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135));
176
+ * **Decoder-block:** parallel attention/MLP with a single layer norm.
177
 
178
+ | **Hyperparameter** | **Value** | **Comment** |
179
+ |--------------------|-----------|----------------------------------------|
180
+ | Layers | 32 | |
181
+ | `d_model` | 4544 | Increased to compensate for multiquery |
182
+ | `head_dim` | 64 | Reduced to optimise for FlashAttention |
183
+ | Vocabulary | 65024 | |
184
+ | Sequence length | 2048 | |
185
 
186
  ### Compute Infrastructure
187
 
 
 
188
  #### Hardware
189
 
190
+ Falcon-7B-Instruct was trained on AWS SageMaker, on 32 A100 40GB GPUs in P4d instances.
191
 
192
  #### Software
193
 
194
+ Falcon-7B-Instruct was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
 
 
196
 
197
+ ## Citation
198
 
199
+ *Paper coming soon* 😊. In the meanwhile, you can use the following information to cite:
200
+ ```
201
+ @article{falcon40b,
202
+ title={{Falcon-40B}: an open large language model with state-of-the-art performance},
203
+ author={Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme},
204
+ year={2023}
205
+ }
206
+ ```
207
 
208
+ To learn more about the pretraining dataset, see the 📓 [RefinedWeb paper](https://arxiv.org/abs/2306.01116).
209
 
210
+ ```
211
+ @article{refinedweb,
212
+ title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only},
213
+ author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay},
214
+ journal={arXiv preprint arXiv:2306.01116},
215
+ eprint={2306.01116},
216
+ eprinttype = {arXiv},
217
+ url={https://arxiv.org/abs/2306.01116},
218
+ year={2023}
219
+ }
220
+ ```
221
 
 
222
 
223
+ ## License
224
 
225
+ Falcon-7B-Instruct is made available under the Apache 2.0 license.
226
 
227
+ ## Contact
228