# Instalação 🤗 Diffusers é testado no Python 3.8+, PyTorch 1.7.0+, e Flax. Siga as instruções de instalação abaixo para a biblioteca de deep learning que você está utilizando: - [PyTorch](https://pytorch.org/get-started/locally/) instruções de instalação - [Flax](https://flax.readthedocs.io/en/latest/) instruções de instalação ## Instalação com pip Recomenda-se instalar 🤗 Diffusers em um [ambiente virtual](https://docs.python.org/3/library/venv.html). Se você não está familiarizado com ambiente virtuals, veja o [guia](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). Um ambiente virtual deixa mais fácil gerenciar diferentes projetos e evitar problemas de compatibilidade entre dependências. Comece criando um ambiente virtual no diretório do projeto: ```bash python -m venv .env ``` Ative o ambiente virtual: ```bash source .env/bin/activate ``` Recomenda-se a instalação do 🤗 Transformers porque 🤗 Diffusers depende de seus modelos: ```bash pip install diffusers["torch"] transformers ``` ```bash pip install diffusers["flax"] transformers ``` ## Instalação a partir do código fonte Antes da instalação do 🤗 Diffusers a partir do código fonte, certifique-se de ter o PyTorch e o 🤗 Accelerate instalados. Para instalar o 🤗 Accelerate: ```bash pip install accelerate ``` então instale o 🤗 Diffusers do código fonte: ```bash pip install git+https://github.com/huggingface/diffusers ``` Esse comando instala a última versão em desenvolvimento `main` em vez da última versão estável `stable`. A versão `main` é útil para se manter atualizado com os últimos desenvolvimentos. Por exemplo, se um bug foi corrigido desde o último lançamento estável, mas um novo lançamento ainda não foi lançado. No entanto, isso significa que a versão `main` pode não ser sempre estável. Nós nos esforçamos para manter a versão `main` operacional, e a maioria dos problemas geralmente são resolvidos em algumas horas ou um dia. Se você encontrar um problema, por favor abra uma [Issue](https://github.com/huggingface/diffusers/issues/new/choose), assim conseguimos arrumar o quanto antes! ## Instalação editável Você precisará de uma instalação editável se você: - Usar a versão `main` do código fonte. - Contribuir para o 🤗 Diffusers e precisa testar mudanças no código. Clone o repositório e instale o 🤗 Diffusers com os seguintes comandos: ```bash git clone https://github.com/huggingface/diffusers.git cd diffusers ``` ```bash pip install -e ".[torch]" ``` ```bash pip install -e ".[flax]" ``` Esses comandos irá linkar a pasta que você clonou o repositório e os caminhos das suas bibliotecas Python. Python então irá procurar dentro da pasta que você clonou além dos caminhos normais das bibliotecas. Por exemplo, se o pacote python for tipicamente instalado no `~/anaconda3/envs/main/lib/python3.10/site-packages/`, o Python também irá procurar na pasta `~/diffusers/` que você clonou. Você deve deixar a pasta `diffusers` se você quiser continuar usando a biblioteca. Agora você pode facilmente atualizar seu clone para a última versão do 🤗 Diffusers com o seguinte comando: ```bash cd ~/diffusers/ git pull ``` Seu ambiente Python vai encontrar a versão `main` do 🤗 Diffusers na próxima execução. ## Cache Os pesos e os arquivos dos modelos são baixados do Hub para o cache que geralmente é o seu diretório home. Você pode mudar a localização do cache especificando as variáveis de ambiente `HF_HOME` ou `HUGGINFACE_HUB_CACHE` ou configurando o parâmetro `cache_dir` em métodos como [`~DiffusionPipeline.from_pretrained`]. Aquivos em cache permitem que você rode 🤗 Diffusers offline. Para prevenir que o 🤗 Diffusers se conecte à internet, defina a variável de ambiente `HF_HUB_OFFLINE` para `True` e o 🤗 Diffusers irá apenas carregar arquivos previamente baixados em cache. ```shell export HF_HUB_OFFLINE=True ``` Para mais detalhes de como gerenciar e limpar o cache, olhe o guia de [caching](https://huggingface.co/docs/huggingface_hub/guides/manage-cache). ## Telemetria Nossa biblioteca coleta informações de telemetria durante as requisições [`~DiffusionPipeline.from_pretrained`]. O dado coletado inclui a versão do 🤗 Diffusers e PyTorch/Flax, o modelo ou classe de pipeline requisitado, e o caminho para um checkpoint pré-treinado se ele estiver hospedado no Hugging Face Hub. Esse dado de uso nos ajuda a debugar problemas e priorizar novas funcionalidades. Telemetria é enviada apenas quando é carregado modelos e pipelines do Hub, e não é coletado se você estiver carregando arquivos locais. Nos entendemos que nem todo mundo quer compartilhar informações adicionais, e nós respeitamos sua privacidade. Você pode desabilitar a coleta de telemetria definindo a variável de ambiente `DISABLE_TELEMETRY` do seu terminal: No Linux/MacOS: ```bash export DISABLE_TELEMETRY=YES ``` No Windows: ```bash set DISABLE_TELEMETRY=YES ```