# PyTorch 2.0 🤗 Diffusers supports the latest optimizations from [PyTorch 2.0](https://pytorch.org/get-started/pytorch-2.0/) which include: 1. A memory-efficient attention implementation, scaled dot product attention, without requiring any extra dependencies such as xFormers. 2. [`torch.compile`](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html), a just-in-time (JIT) compiler to provide an extra performance boost when individual models are compiled. Both of these optimizations require PyTorch 2.0 or later and 🤗 Diffusers > 0.13.0. ```bash pip install --upgrade torch diffusers ``` ## Scaled dot product attention [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention) (SDPA) is an optimized and memory-efficient attention (similar to xFormers) that automatically enables several other optimizations depending on the model inputs and GPU type. SDPA is enabled by default if you're using PyTorch 2.0 and the latest version of 🤗 Diffusers, so you don't need to add anything to your code. However, if you want to explicitly enable it, you can set a [`DiffusionPipeline`] to use [`~models.attention_processor.AttnProcessor2_0`]: ```diff import torch from diffusers import DiffusionPipeline + from diffusers.models.attention_processor import AttnProcessor2_0 pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda") + pipe.unet.set_attn_processor(AttnProcessor2_0()) prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] ``` SDPA should be as fast and memory efficient as `xFormers`; check the [benchmark](#benchmark) for more details. In some cases - such as making the pipeline more deterministic or converting it to other formats - it may be helpful to use the vanilla attention processor, [`~models.attention_processor.AttnProcessor`]. To revert to [`~models.attention_processor.AttnProcessor`], call the [`~UNet2DConditionModel.set_default_attn_processor`] function on the pipeline: ```diff import torch from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda") + pipe.unet.set_default_attn_processor() prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] ``` ## torch.compile The `torch.compile` function can often provide an additional speed-up to your PyTorch code. In 🤗 Diffusers, it is usually best to wrap the UNet with `torch.compile` because it does most of the heavy lifting in the pipeline. ```python from diffusers import DiffusionPipeline import torch pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda") pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) images = pipe(prompt, num_inference_steps=steps, num_images_per_prompt=batch_size).images[0] ``` Depending on GPU type, `torch.compile` can provide an *additional speed-up* of **5-300x** on top of SDPA! If you're using more recent GPU architectures such as Ampere (A100, 3090), Ada (4090), and Hopper (H100), `torch.compile` is able to squeeze even more performance out of these GPUs. Compilation requires some time to complete, so it is best suited for situations where you prepare your pipeline once and then perform the same type of inference operations multiple times. For example, calling the compiled pipeline on a different image size triggers compilation again which can be expensive. For more information and different options about `torch.compile`, refer to the [`torch_compile`](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) tutorial. > [!TIP] > Learn more about other ways PyTorch 2.0 can help optimize your model in the [Accelerate inference of text-to-image diffusion models](../tutorials/fast_diffusion) tutorial. ## Benchmark We conducted a comprehensive benchmark with PyTorch 2.0's efficient attention implementation and `torch.compile` across different GPUs and batch sizes for five of our most used pipelines. The code is benchmarked on 🤗 Diffusers v0.17.0.dev0 to optimize `torch.compile` usage (see [here](https://github.com/huggingface/diffusers/pull/3313) for more details). Expand the dropdown below to find the code used to benchmark each pipeline:
### Stable Diffusion text-to-image ```python from diffusers import DiffusionPipeline import torch path = "runwayml/stable-diffusion-v1-5" run_compile = True # Set True / False pipe = DiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16, use_safetensors=True) pipe = pipe.to("cuda") pipe.unet.to(memory_format=torch.channels_last) if run_compile: print("Run torch compile") pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) prompt = "ghibli style, a fantasy landscape with castles" for _ in range(3): images = pipe(prompt=prompt).images ``` ### Stable Diffusion image-to-image ```python from diffusers import StableDiffusionImg2ImgPipeline from diffusers.utils import load_image import torch url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" init_image = load_image(url) init_image = init_image.resize((512, 512)) path = "runwayml/stable-diffusion-v1-5" run_compile = True # Set True / False pipe = StableDiffusionImg2ImgPipeline.from_pretrained(path, torch_dtype=torch.float16, use_safetensors=True) pipe = pipe.to("cuda") pipe.unet.to(memory_format=torch.channels_last) if run_compile: print("Run torch compile") pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) prompt = "ghibli style, a fantasy landscape with castles" for _ in range(3): image = pipe(prompt=prompt, image=init_image).images[0] ``` ### Stable Diffusion inpainting ```python from diffusers import StableDiffusionInpaintPipeline from diffusers.utils import load_image import torch img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" init_image = load_image(img_url).resize((512, 512)) mask_image = load_image(mask_url).resize((512, 512)) path = "runwayml/stable-diffusion-inpainting" run_compile = True # Set True / False pipe = StableDiffusionInpaintPipeline.from_pretrained(path, torch_dtype=torch.float16, use_safetensors=True) pipe = pipe.to("cuda") pipe.unet.to(memory_format=torch.channels_last) if run_compile: print("Run torch compile") pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) prompt = "ghibli style, a fantasy landscape with castles" for _ in range(3): image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0] ``` ### ControlNet ```python from diffusers import StableDiffusionControlNetPipeline, ControlNetModel from diffusers.utils import load_image import torch url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" init_image = load_image(url) init_image = init_image.resize((512, 512)) path = "runwayml/stable-diffusion-v1-5" run_compile = True # Set True / False controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16, use_safetensors=True) pipe = StableDiffusionControlNetPipeline.from_pretrained( path, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True ) pipe = pipe.to("cuda") pipe.unet.to(memory_format=torch.channels_last) pipe.controlnet.to(memory_format=torch.channels_last) if run_compile: print("Run torch compile") pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True) prompt = "ghibli style, a fantasy landscape with castles" for _ in range(3): image = pipe(prompt=prompt, image=init_image).images[0] ``` ### DeepFloyd IF text-to-image + upscaling ```python from diffusers import DiffusionPipeline import torch run_compile = True # Set True / False pipe_1 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16, use_safetensors=True) pipe_1.to("cuda") pipe_2 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-II-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16, use_safetensors=True) pipe_2.to("cuda") pipe_3 = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", torch_dtype=torch.float16, use_safetensors=True) pipe_3.to("cuda") pipe_1.unet.to(memory_format=torch.channels_last) pipe_2.unet.to(memory_format=torch.channels_last) pipe_3.unet.to(memory_format=torch.channels_last) if run_compile: pipe_1.unet = torch.compile(pipe_1.unet, mode="reduce-overhead", fullgraph=True) pipe_2.unet = torch.compile(pipe_2.unet, mode="reduce-overhead", fullgraph=True) pipe_3.unet = torch.compile(pipe_3.unet, mode="reduce-overhead", fullgraph=True) prompt = "the blue hulk" prompt_embeds = torch.randn((1, 2, 4096), dtype=torch.float16) neg_prompt_embeds = torch.randn((1, 2, 4096), dtype=torch.float16) for _ in range(3): image_1 = pipe_1(prompt_embeds=prompt_embeds, negative_prompt_embeds=neg_prompt_embeds, output_type="pt").images image_2 = pipe_2(image=image_1, prompt_embeds=prompt_embeds, negative_prompt_embeds=neg_prompt_embeds, output_type="pt").images image_3 = pipe_3(prompt=prompt, image=image_1, noise_level=100).images ```
The graph below highlights the relative speed-ups for the [`StableDiffusionPipeline`] across five GPU families with PyTorch 2.0 and `torch.compile` enabled. The benchmarks for the following graphs are measured in *number of iterations/second*. ![t2i_speedup](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/pt2_benchmarks/t2i_speedup.png) To give you an even better idea of how this speed-up holds for the other pipelines, consider the following graph for an A100 with PyTorch 2.0 and `torch.compile`: ![a100_numbers](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/pt2_benchmarks/a100_numbers.png) In the following tables, we report our findings in terms of the *number of iterations/second*. ### A100 (batch size: 1) | **Pipeline** | **torch 2.0 -
no compile** | **torch nightly -
no compile** | **torch 2.0 -
compile** | **torch nightly -
compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 21.66 | 23.13 | 44.03 | 49.74 | | SD - img2img | 21.81 | 22.40 | 43.92 | 46.32 | | SD - inpaint | 22.24 | 23.23 | 43.76 | 49.25 | | SD - controlnet | 15.02 | 15.82 | 32.13 | 36.08 | | IF | 20.21 /
13.84 /
24.00 | 20.12 /
13.70 /
24.03 | ❌ | 97.34 /
27.23 /
111.66 | | SDXL - txt2img | 8.64 | 9.9 | - | - | ### A100 (batch size: 4) | **Pipeline** | **torch 2.0 -
no compile** | **torch nightly -
no compile** | **torch 2.0 -
compile** | **torch nightly -
compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 11.6 | 13.12 | 14.62 | 17.27 | | SD - img2img | 11.47 | 13.06 | 14.66 | 17.25 | | SD - inpaint | 11.67 | 13.31 | 14.88 | 17.48 | | SD - controlnet | 8.28 | 9.38 | 10.51 | 12.41 | | IF | 25.02 | 18.04 | ❌ | 48.47 | | SDXL - txt2img | 2.44 | 2.74 | - | - | ### A100 (batch size: 16) | **Pipeline** | **torch 2.0 -
no compile** | **torch nightly -
no compile** | **torch 2.0 -
compile** | **torch nightly -
compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 3.04 | 3.6 | 3.83 | 4.68 | | SD - img2img | 2.98 | 3.58 | 3.83 | 4.67 | | SD - inpaint | 3.04 | 3.66 | 3.9 | 4.76 | | SD - controlnet | 2.15 | 2.58 | 2.74 | 3.35 | | IF | 8.78 | 9.82 | ❌ | 16.77 | | SDXL - txt2img | 0.64 | 0.72 | - | - | ### V100 (batch size: 1) | **Pipeline** | **torch 2.0 -
no compile** | **torch nightly -
no compile** | **torch 2.0 -
compile** | **torch nightly -
compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 18.99 | 19.14 | 20.95 | 22.17 | | SD - img2img | 18.56 | 19.18 | 20.95 | 22.11 | | SD - inpaint | 19.14 | 19.06 | 21.08 | 22.20 | | SD - controlnet | 13.48 | 13.93 | 15.18 | 15.88 | | IF | 20.01 /
9.08 /
23.34 | 19.79 /
8.98 /
24.10 | ❌ | 55.75 /
11.57 /
57.67 | ### V100 (batch size: 4) | **Pipeline** | **torch 2.0 -
no compile** | **torch nightly -
no compile** | **torch 2.0 -
compile** | **torch nightly -
compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 5.96 | 5.89 | 6.83 | 6.86 | | SD - img2img | 5.90 | 5.91 | 6.81 | 6.82 | | SD - inpaint | 5.99 | 6.03 | 6.93 | 6.95 | | SD - controlnet | 4.26 | 4.29 | 4.92 | 4.93 | | IF | 15.41 | 14.76 | ❌ | 22.95 | ### V100 (batch size: 16) | **Pipeline** | **torch 2.0 -
no compile** | **torch nightly -
no compile** | **torch 2.0 -
compile** | **torch nightly -
compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 1.66 | 1.66 | 1.92 | 1.90 | | SD - img2img | 1.65 | 1.65 | 1.91 | 1.89 | | SD - inpaint | 1.69 | 1.69 | 1.95 | 1.93 | | SD - controlnet | 1.19 | 1.19 | OOM after warmup | 1.36 | | IF | 5.43 | 5.29 | ❌ | 7.06 | ### T4 (batch size: 1) | **Pipeline** | **torch 2.0 -
no compile** | **torch nightly -
no compile** | **torch 2.0 -
compile** | **torch nightly -
compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 6.9 | 6.95 | 7.3 | 7.56 | | SD - img2img | 6.84 | 6.99 | 7.04 | 7.55 | | SD - inpaint | 6.91 | 6.7 | 7.01 | 7.37 | | SD - controlnet | 4.89 | 4.86 | 5.35 | 5.48 | | IF | 17.42 /
2.47 /
18.52 | 16.96 /
2.45 /
18.69 | ❌ | 24.63 /
2.47 /
23.39 | | SDXL - txt2img | 1.15 | 1.16 | - | - | ### T4 (batch size: 4) | **Pipeline** | **torch 2.0 -
no compile** | **torch nightly -
no compile** | **torch 2.0 -
compile** | **torch nightly -
compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 1.79 | 1.79 | 2.03 | 1.99 | | SD - img2img | 1.77 | 1.77 | 2.05 | 2.04 | | SD - inpaint | 1.81 | 1.82 | 2.09 | 2.09 | | SD - controlnet | 1.34 | 1.27 | 1.47 | 1.46 | | IF | 5.79 | 5.61 | ❌ | 7.39 | | SDXL - txt2img | 0.288 | 0.289 | - | - | ### T4 (batch size: 16) | **Pipeline** | **torch 2.0 -
no compile** | **torch nightly -
no compile** | **torch 2.0 -
compile** | **torch nightly -
compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 2.34s | 2.30s | OOM after 2nd iteration | 1.99s | | SD - img2img | 2.35s | 2.31s | OOM after warmup | 2.00s | | SD - inpaint | 2.30s | 2.26s | OOM after 2nd iteration | 1.95s | | SD - controlnet | OOM after 2nd iteration | OOM after 2nd iteration | OOM after warmup | OOM after warmup | | IF * | 1.44 | 1.44 | ❌ | 1.94 | | SDXL - txt2img | OOM | OOM | - | - | ### RTX 3090 (batch size: 1) | **Pipeline** | **torch 2.0 -
no compile** | **torch nightly -
no compile** | **torch 2.0 -
compile** | **torch nightly -
compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 22.56 | 22.84 | 23.84 | 25.69 | | SD - img2img | 22.25 | 22.61 | 24.1 | 25.83 | | SD - inpaint | 22.22 | 22.54 | 24.26 | 26.02 | | SD - controlnet | 16.03 | 16.33 | 17.38 | 18.56 | | IF | 27.08 /
9.07 /
31.23 | 26.75 /
8.92 /
31.47 | ❌ | 68.08 /
11.16 /
65.29 | ### RTX 3090 (batch size: 4) | **Pipeline** | **torch 2.0 -
no compile** | **torch nightly -
no compile** | **torch 2.0 -
compile** | **torch nightly -
compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 6.46 | 6.35 | 7.29 | 7.3 | | SD - img2img | 6.33 | 6.27 | 7.31 | 7.26 | | SD - inpaint | 6.47 | 6.4 | 7.44 | 7.39 | | SD - controlnet | 4.59 | 4.54 | 5.27 | 5.26 | | IF | 16.81 | 16.62 | ❌ | 21.57 | ### RTX 3090 (batch size: 16) | **Pipeline** | **torch 2.0 -
no compile** | **torch nightly -
no compile** | **torch 2.0 -
compile** | **torch nightly -
compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 1.7 | 1.69 | 1.93 | 1.91 | | SD - img2img | 1.68 | 1.67 | 1.93 | 1.9 | | SD - inpaint | 1.72 | 1.71 | 1.97 | 1.94 | | SD - controlnet | 1.23 | 1.22 | 1.4 | 1.38 | | IF | 5.01 | 5.00 | ❌ | 6.33 | ### RTX 4090 (batch size: 1) | **Pipeline** | **torch 2.0 -
no compile** | **torch nightly -
no compile** | **torch 2.0 -
compile** | **torch nightly -
compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 40.5 | 41.89 | 44.65 | 49.81 | | SD - img2img | 40.39 | 41.95 | 44.46 | 49.8 | | SD - inpaint | 40.51 | 41.88 | 44.58 | 49.72 | | SD - controlnet | 29.27 | 30.29 | 32.26 | 36.03 | | IF | 69.71 /
18.78 /
85.49 | 69.13 /
18.80 /
85.56 | ❌ | 124.60 /
26.37 /
138.79 | | SDXL - txt2img | 6.8 | 8.18 | - | - | ### RTX 4090 (batch size: 4) | **Pipeline** | **torch 2.0 -
no compile** | **torch nightly -
no compile** | **torch 2.0 -
compile** | **torch nightly -
compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 12.62 | 12.84 | 15.32 | 15.59 | | SD - img2img | 12.61 | 12,.79 | 15.35 | 15.66 | | SD - inpaint | 12.65 | 12.81 | 15.3 | 15.58 | | SD - controlnet | 9.1 | 9.25 | 11.03 | 11.22 | | IF | 31.88 | 31.14 | ❌ | 43.92 | | SDXL - txt2img | 2.19 | 2.35 | - | - | ### RTX 4090 (batch size: 16) | **Pipeline** | **torch 2.0 -
no compile** | **torch nightly -
no compile** | **torch 2.0 -
compile** | **torch nightly -
compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 3.17 | 3.2 | 3.84 | 3.85 | | SD - img2img | 3.16 | 3.2 | 3.84 | 3.85 | | SD - inpaint | 3.17 | 3.2 | 3.85 | 3.85 | | SD - controlnet | 2.23 | 2.3 | 2.7 | 2.75 | | IF | 9.26 | 9.2 | ❌ | 13.31 | | SDXL - txt2img | 0.52 | 0.53 | - | - | ## Notes * Follow this [PR](https://github.com/huggingface/diffusers/pull/3313) for more details on the environment used for conducting the benchmarks. * For the DeepFloyd IF pipeline where batch sizes > 1, we only used a batch size of > 1 in the first IF pipeline for text-to-image generation and NOT for upscaling. That means the two upscaling pipelines received a batch size of 1. *Thanks to [Horace He](https://github.com/Chillee) from the PyTorch team for their support in improving our support of `torch.compile()` in Diffusers.*